
Probability Models

1 Discrete Models

Here we discuss three important discrete distributions, which may be used to model different real
life situations. In somewhat abstract terms, these real life situations will involve studying some
aspect of a sequence of independent and identically distributed (i.i.d.) Bernoulli trials with constant
probability of Success p.

1.1 Binomial Distribution

If X ∼B(n, p), it’s probability mass function (p.m.f.) is given by P (X = k) =

(

n
k

)

pk(1 − p)n−k

for k = 0, 1, . . . , n and its cumulative distribution function (c.d.f.) is given by F (x) = P (X ≤ x) =
∑⌊x⌋

k=0

(

n
k

)

pk(1− p)n−k

(

n
k

)

pk(1− p)n−k. Here are some plots of B(n, p) p.m.f.’s and c.d.f.’s and

the R codes for generating them.

> x<-0:8

> p<-dbinom(x,8,0.4)

> c<-pbinom(x,8,0.4)

> pmfplot(x,p,"P.M.F. of B(8,0.4)")

> cdfplot(x,c,"C.D.F. of B(8,0.4)")
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Here are some quantile calculations:
> qbinom(0.25,8,0.4) > qbinom(0.5,8,0.4)

[1] 2 [1] 3

> qbinom(0.75,8,0.4) > qbinom(0.85,8,0.4)

[1] 4 [1] 5

> qbinom(0.95,8,0.4) > qbinom(0.99,8,0.4)

[1] 5 [1] 6

> qbinom(0.999,8,0.4) > qbinom(0.9999,8,0.4)

[1] 7 [1] 8

1



Here are some simulations:

> y1<-rbinom(100,8,0.4)

> table(y1)

y1

0 1 2 3 4 5 6 7

1 4 21 26 34 11 2 1

> y2<-rbinom(1000,8,0.4)

> table(y2)

y2

0 1 2 3 4 5 6 7

20 96 214 275 232 117 33 13

> round(p,digits=4)

[1] 0.0168 0.0896 0.2090 0.2787 0.2322 0.1239 0.0413 0.0079 0.0007

> pmfplot(x,table(y1)/100,"Simulation 1")

> pmfplot(x,table(y2)/1000,"Simulation 2")

0 2 4 6 8

0.
00

0.
10

0.
20

0.
30

Simulation 1

x

p.m
.f.

0 2 4 6 8

0.
05

0.
10

0.
15

0.
20

0.
25

Simulation 2

x

p.m
.f.

1.2 Poisson Distribution

For some λ > 0, if X ∼Poisson(λ) its p.m.f is given by P (X = k) = e−λ λk

k!
for k = 0, 1, 2, . . ., and

its c.d.f. is given by F (x) = P (X ≤ x) = e−λ
∑⌊x⌋

k=0
λk

k!
. Poisson distribution has been introduced

earlier in Example 27 in Chapter 3 consisting of notes on Random Variables. It arises as a limiting
distribution of B(n, pn) for n → ∞ such that npn → λ as n → ∞. This fact has actually been
proved in Example 28 of Chapter 3 using characteristic function, where it is also mentioned that a
direct proof will be provided in a later chapter. Here is the direct proof which is much more straight
forward than the proof given in Example 28 of Chapter 3 using characteristic function.

If X ∼B(n, pn), then for a fixed non-negative integer k

lim
n→∞

P (X = k) = lim
n→∞

(

n
k

)

pk
n(1 − pn)n−k

= lim
n→∞

1

k!
×

n(n − 1) · · · (n − k + 1)(n − k)!

(n − k)!
×

(npn)k

nk
×
(

1 −
npn

n

)n−k

=
1

k!
×

{

lim
n→∞

1
(

1 −
1

n

)

· · ·

(

1 −
k − 1

n

)}

×
(

lim
n→∞

xn

)k

× lim
n→∞

(

1 −
xn

n

)n

× lim
n→∞

(1 − pn)−k

where xn = npn is such that limn→∞ xn = λ. Now the term in {·} equals 1, and it is well-known

that limn→∞

(

1 − xn

n

)n
= e−x if limn→∞ xn = x. Further limn→∞ pn = 0 as npn has a limit. Thus

the above limit equals e−λ λk

k!
.
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As in the case of Binomial distribution, the standard way to visualise a discrete distribution is to
compare successive terms in its p.m.f.. In case of Poisson, for k = 0, 1, 2, . . . this yields

P (X = k + 1)

P (X = k)

>
=
<

1 ⇐⇒
λ

k + 1

>
=
<

1 ⇐⇒ k
<
=
>

λ − 1

This means that P (X = k + 1) will remain greater than P (X = k) as long as k < λ − 1 and
then the p.m.f. starts declining. Thus except for the rare occasion of λ being a positive integer, in
all other cases, the maximal value of k for which P (X = k + 1) > P (X = k) is ⌊λ − 1⌋ yielding
⌊λ−1⌋+1 = ⌊λ⌋ as the unique mode. In case λ is a positive integer, with P (X = λ) = P (X = λ−1)
being the maximal value of the p.m.f., the distribution is bimodal with both λ − 1 and λ being its
two modes.

Here are some plots comparing the p.m.f.’s of the B(n, p) distributions with large n and small p
and the corresponding Poisson(λ = np) approximations. Also note how Poisson(1) is bimodal with
0 and 1 being its two modes while Poisson(2.5) is unimodal with its mode at 2.

> p1<-dbinom(x,100,0.01)

> p2<-dpois(x,1)

> round(p1,digits=4)

[1] 0.3660 0.3697 0.1849 0.0610 0.0149 0.0029 0.0005 0.0001 0.0000

> round(p2,digits=4)

[1] 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031 0.0005 0.0001 0.0000

> pmfplot(x,p1,"B(100,0.01) P.M.F")

> pmfplot(x,p2,"Poisson(1) P.M.F")
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> x2<-0:12

> p3<-dbinom(x2,1000,0.0025)

> p4<-dpois(x2,2.5)

> round(p3,digits=4)

[1] 0.0818 0.2051 0.2567 0.2141 0.1337 0.0668 0.0277 0.0099 0.0031 0.0008

[11] 0.0002 0.0000 0.0000

> round(p4,digits=4)

[1] 0.0821 0.2052 0.2565 0.2138 0.1336 0.0668 0.0278 0.0099 0.0031 0.0009

[11] 0.0002 0.0000 0.0000

> pmfplot(x2,p3,"B(1000,0.0025) P.M.F")

> pmfplot(x2,p4,"Poisson(2.5) P.M.F")
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Here are the c.d.f.’s of these Poisson distributions.

> c1<-ppois(x,1)

> c2<-ppois(x2,2.5)

> cdfplot(x,c1,"C.D.F. of Poisson(1)")

> cdfplot(x2,c2,"C.D.F. of Poisson(2.5)")
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Some quantile calculations:

> qpois(0.25,1) > qpois(0.25,2.5)

[1] 0 [1] 1

> qpois(0.5,1) > qpois(0.5,2.5)

[1] 1 [1] 2

> qpois(0.75,1) > qpois(0.75,2.5)

[1] 2 [1] 3

> qpois(0.9,1) > qpois(0.9,2.5)

[1] 2 [1] 5

> qpois(0.99,1) > qpois(0.99,2.5)

[1] 4 [1] 7

Some simulations:

> y1<-rpois(1000,1) > y2<-rpois(1000,2.5)

> table(y1) > table(y2)

y1 y2

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

387 345 188 62 15 2 1 68 222 260 203 114 88 31 9 4 1

> pmfplot(x,table(y1)/1000,"Simulation 1") > pmfplot(x,table(y2)/1000,"Simulation 2")
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In Example 27 in page 69 of Chapter 3 (the notes on Random Variables) it has been found that
the moment generating function (m.g.f.) of the Poisson(λ) random variable is given by M(t) =
exp {λ (et − 1)}. Thus its mean is given by

M ′(0) =
d

dt
M(t)

∣

∣

∣

∣

∣

t=0

= λet exp
{

λ
(

et − 1
)}∣

∣

∣

t=0
= λ

and its variance is given by

M ′′(0) − (M ′(0))2 =
d

dt
λet exp

{

λ
(

et − 1
)}

∣

∣

∣

∣

∣

t=0

− λ2 =
(

λ2e2t + λet
)

exp
{

λ
(

et − 1
)}∣

∣

∣

t=0
− λ2 = λ.

.

There is another very important way of viewing the Poisson distribution, in terms of what is
called a Poisson Process. Consider keeping track of occurrence of some random events in space
or time. It will be easier to explain it in terms of time. Starting at some time point labelled as
0, one is interested in counting the number of times a certain event of interest, such as arrival of
customers/orders/phone-calls/failures etc. has occurred till some point of time t. Let N(t) denote
the number of times the event of interest has occurred in the time interval [0, t]. Since the events
occur at random points of time, in order to get a handle on the distribution of N(t), it is first
necessary to postulate or characterise the nature of the randomness of the occurrence of these
events as listed below. It is assumed that

i. N(0) = 0.

ii. If (t1, t2]∩ (t3, t4] = φ, N(t2)−N(t1), which denotes the number of events occurring in the time
interval (t1, t2], is independent of N(t4) − N(t3), the number of events occurring in the time
interval (t3, t4]. In words, number of events occurring in disjoint time intervals are independent
of each other.

iii. limh→0
1
h
P [N(t + h) − N(t) = 1] = λ and limh→0

1
h
P [N(t + h) − N(t) ≥ 2] = 0. In words,

probability of 2 or more events happening in a tiny interval (t, t + h] of length h goes to 0
faster than the length of the interval itself, and the probability of exactly one event happening
in that tiny interval (t, t + h] of length h is proportional to the length of the interval with the
proportionality constant λ, which in this light may be viewed as the rate of the occurrence of
the event.

If events happen according to the above three postulates, then N(t) is said to follow a Homogeneous
Poisson Process (HPP), and it may be shown that N(t) ∼Poisson(λt). It is very important to note
a couple of points. N(t) is a stochastic process in which {N(t) : t ≥ 0} is considered in its totality
and is called a HPP instead of considering it at only one given fixed time instance like say t0 at
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which point N(t0), which is a random variable, happens to have a Poisson distribution. And the
second point to note is that a HPP need not be restricted to counting occurrences of events only
in time. The time intervals mentioned in the above postulates may easily be replaced by spatial
intervals as well, and the HPP may again be used to model things like number of defects detected
on the surface of a car of a certain area, or the number of chocolate chips found in a cookie of a
certain volume.

For a rigorous proof that N(t) ∼Poisson(λt) one may look into the book Stochastic Process(1996),
Second Edition, Wiley, by Sheldon M. Ross pp.60-63, but intuitively it is fairly straight forward to
see why, as explained below.

Since we are interested in finding the distribution of the number of events occurring in the time
interval [0, t], let’s divide the interval into n equal parts, each one of length t

n
as in the following

diagram:

0 t
n

2t
n

(n−1)t
n

t· · · · · ·

If n is large (actually the exact answer can be obtained only with limn→∞), by postulate iii, in
every interval of length t

n
, there is a negligible probability of 2 or more events happening and the

probability of one event happening is approximately same as pn = λ t
n
. That is (approximately

speaking) in each one of those n intervals either the event of interest occurs (success) or it doesn’t
(failure). Thus a Bernoulli trial is taking place in each one of those n tiny intervals with the
probability of success being pn. Furthermore by postulate ii, since the n intervals are disjoint from
each other, these n Bernoulli trials are mutually independent. Therefore N(t), which is the total
number of events happening in [0, t], which in turn is same as the total number of successes in
these n independent Bernoulli trials, may be approximated by a B(n, pn) random variable with
limn→∞ npn = λt. Thus as is shown in the beginning of this sub-section, as n → ∞ the distribution
of N(t) is same as that of a Poisson(λt) random variable.

1.3 Negative Binomial Distribution

Recall that at the beginning of Chapter 4 on Discrete Distributions, it is stated that the fundamen-
tal building block of discrete distributions are Bernoulli trials (as we just saw even for the Poisson
distribution above). Consider independent and identically distributed Bernoulli trials with proba-
bility of success p. Now consider the random variable X denoting the number of trials one has to
wait till one gets n successes, for some fixed positive integer n. Such an X is said to have a Negative
Binomial Distribution with parameters n an p and is denoted by X ∼NB(n, p). As examples think
about counting the total number of tosses one has to conduct in order to get say 10 heads, or the
total number of job interviews a candidate has to attend in order to end up with 2 job offers.

We begin by figuring out the p.m.f. of the NB(n, p) random variable. First note that the support
of X, the set where it concentrates all its probabilities or the set of possible values that X can take,
is given by X = {n, n+1, n+2, . . .} which is countably infinite. In order to find the p.m.f. of X, fix
a k ∈ {0, 1, 2, . . .} and consider the event {X = n+k}. To find P (X = n+k) one needs to figure out
the basic fundamental outcomes or ω’s that belong to the event set A = {X = n + k} = {ω ∈ Ω :
X(ω) = n + k}. Note that as in the case of Binomial model, the ω’s can be represented by a string
of Successes (S’s) and Failures (F ’s) such as FSS · · ·SFS with the i-th symbol representing the
outcome of the i-th Bernoulli trial for i = 1, 2, . . .. Now for a ω to belong to A, it must have exactly
n S’s (as the experiment involves keeping on conducting the Bernoulli trials till one gets exactly n
successes) and k F ’s (as the total number of trials is n + k - that is exactly what X = n + k means
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- and there are n S’s, the remaining k must be F ’s) with the last symbol necessarily being an S (as
the experiment must stop as soon as the n-th success is observed). Since the trials are independent
with P (S) = p, so that P (F ) = 1 − P (S) = 1 − p = q (say), for any ω ∈ A, P (ω) = pnqk. Thus in
order to find P (X = n + k), now all one has to do is figure out how many such distinct ω’s could
be there in the set A. Since such an ω is an (n + k)-long string of S and F ’s with n S’s, k F ’s and
an S in the end, it is same as choosing k positions from the n + k − 1 positions to be filled with

F ’s and the remaining ones filled with S’s, which can be done in

(

n + k − 1
k

)

ways. Thus there

are

(

n + k − 1
k

)

many ω’s in A with each ω having a probability of pnqk yielding the Negative

Binomial p.m.f. as P (X = n + k) =

(

n + k − 1
k

)

pnqk for k = 0, 1, 2, . . ..

The proof that
∑∞

k=0 P (X = n + k) = 1 and the name Negative Binomial come from the negative
binomial coefficients and the negative binomial theorem introduced in page 61 of the Chapter 3:

Random Variable notes. Recall that

(

n + k − 1
k

)

= (−1)k

(

−n
k

)

and

∞
∑

k=0

P (X = n + k) =
∞
∑

k=0

(

n + k − 1
k

)

pnqk = pn
∞
∑

k=0

(

−n
k

)

(−1)kqk = pn(1 − q)−n = 1

with the last but one equality following from the negative binomial theorem.

As usual for visualisation of the distribution, like Binomial and Poisson, comparison of successive
terms in the p.m.f. yields

P (X = n + k + 1)

P (X = n + k)
=

(n + k)!k!(n − 1)!qk+1pn

(n + k − 1)!(k + 1)!(n − 1)!qkpn
=

n + k

k + 1
q

>
=
<

1 ⇐⇒ k
<
=
>

n − 1

p
− n

which goes on to show that starting from n, the p.m.f. increases only up to k ≤ ⌊n−1
p

− n⌋ + 1 =

⌊(n − 1) q

p
⌋, after which starts declining. Thus if (n − 1) q

p
≥ 0 is not an integer, negative binomial

distribution has a unique mode at n + ⌊(n− 1) q

p
⌋, and in case (n− 1) q

p
is an integer, like Binomial

and Poisson, negative binomial also is bimodal with two side by side modes at n + (n − 1) q

p
and

(n − 1)
(

1 + q

p

)

, with the exception of the case of n = 1, in which case it has a unique mode at 0.

Here are the plots of the p.m.f.’s of a couple of NB(n, p) distribution. Note the bimodal case for
n = 3 and p = 1/2. Also note that the R’s xnbinom(...) commands for x=d,p,q and r provide
the desired quantities for an NB(n, p)−n distribution with support {0, 1, 2, . . .}, with the NB(n, p)
distribution as defined here with support {n, n + 1, n + 2, . . .}. Thus the slight modification with
“+n” in the commands for the plots.

> x<-0:18

> pmfplot(x+2,dnbinom(x,2,0.3),"NB(2,0.3) P.M.F.")

> x2<-0:12

> pmfplot(x2+3,dnbinom(x2,3,0.5),"NB(3,0.5) P.M.F.")

The plots of the c.d.f.’s of the distributions also follow.

> cdfplot(x+2,pnbinom(x,2,0.3),"C.D.F. of NB(2,0.3)")

> cdfplot(x2+3,pnbinom(x2,3,0.5),"C.D.F. of NB(3,0.5)")
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Some quantile calculations:

> qnbinom(0.25,2,0.3) > qnbinom(0.25,3,0.5)

[1] 2 [1] 1

> qnbinom(0.5,2,0.3) > qnbinom(0.5,3,0.5)

[1] 4 [1] 2

> qnbinom(0.75,2,0.3) > qnbinom(0.75,3,0.5)

[1] 7 [1] 4

> qnbinom(0.9,2,0.3) > qnbinom(0.9,3,0.5)

[1] 10 [1] 6

> qnbinom(0.99,2,0.3) > qnbinom(0.99,3,0.5)

[1] 18 [1] 11

Now what about the moments? Though it is possible to obtain the moments by direct calculations
with the NB(n, p) p.m.f. and the aid of the negative binomial theorem, deriving them using the
m.g.f. route is the alternative adopted here.

Consider the random variable introduced in Example 4 in Chapter 3, where one counts the
number of Tails till the first Head appears in an independent sequence of tosses of a coin with
P (H) = p. Here let’s denote that random variable by Z1, with Head and Tail replaced by Success
and Failure respectively, and “independent tosses” replaced by i.i.d. sequence of Bernoulli trials.
Now let Y1 = Z1 + 1 denote the number of independent Bernoulli trials required to obtain the first
Success, and in general for i ≥ 2 let Yi denote the number of trials required between the i − 1-st
and the i-th Success.
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Though it has not been formally said so earlier, for obvious reason Y1 is said to have a Geometric
distribution, or alternatively a Geometric Random Variable and is denoted by Y1 ∼Geom(p).
Now it is easy to see that all the Y1, Y2, . . . are i.i.d. Geom(p) and by the definition of the Negative
Binomial random variable X given in the first paragraph of this sub-section, where it is defined
as the number of trials required to obtain n Successes in an i.i.d. sequence of Bernoulli trials,
X =

∑n
i=1 Yi.

Now in Example 4 (Continued) in page 66 of §6.2 of Chapter 3 it has been shown that the
m.g.f. of Z1 is given by MZ1

(t) = p

1−qet . Thus the m.g.f. of Y1 = Z1 + 1 is given by

MY1
(t) = E

[

etY1

]

= E
[

et(Z1+1)
]

= etE
[

etZ1

]

= etMZ1
(t) =

pet

1 − qet

and by the result for the m.g.f. of i.i.d. sum proven in page 68 of Chapter 3, the m.g.f. of NB(n, p)
random variable X is given by

MX(t) = [MY1
(t)]n =

(

pet

1 − qet

)n

.

Thus the mean of NB(n, p) is given by

E[X] = M ′
X(0) =

d

dt
MX(t)

∣

∣

∣

∣

∣

t=0

=
npnetn

(1 − qet)n+1

∣

∣

∣

∣

∣

t=0

=
n

p

and

E
[

X2
]

= M ′′
X(0) =

d

dt
M ′

X(t)

∣

∣

∣

∣

∣

t=0

=
npnetn (n + qet)

(1 − qet)n+2

∣

∣

∣

∣

∣

t=0

=
n(n + q)

p2

yielding

V [X] =
n(n + q)

p2
−

n2

p2
= n

q

p2
.

There is a far more elegant way of deriving the mean and variance of the Negative Binomial
distribution, which is as follows. Recall that the Negative Binomial X =

∑n
i=1 Yi, where the Yi’s

are i.i.d. Geom(p). Recall that in pp.10-11 of Chapter 3 it has been proven that E[Z1] = q

p
and

V [Z1] = q

p2 . Since Yi’s are i.i.d. and Y1 = Z1 + 1, E [Yi] = 1 + q

p
= 1

p
and V [Yi] = V [Z1] = q

p2 . Now
since X =

∑n
i=1 Yi,

E[X] =
n
∑

i=1

E [Yi] =
n
∑

i=1

1

p
=

n

p
and V [X] =

n
∑

i=1

V [Yi] =
n
∑

i=1

q

p2
= n

q

p2
.

We will end this section by studying a very important property of the NB(1,p) or the Geom(p)
random variable Y , which has p.m.f. P [Y = n] = qn−1p for n = 1, 2, . . .. First note that it is one
of those rare cases of a discrete model where the c.d.f. can be expressed in closed form (instead of
just a finite sum) as follows:

For n = 1, 2, . . . , P [Y ≤ n] =
n
∑

k=1

qk−1p = p
1 − qn

1 − q
= 1 − qn

so that P [Y > n] = qn. Now for positive integers m and n,

P [Y = m+n|Y > m] =
P [Y = m + n & Y > m]

P [Y > m]
=

P [Y = m + n]

P [Y > m]
=

qm+n−1p

qm
= qn−1p = P [Y = n].
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This is a remarkable property called the lack of memory property, that is enjoyed by a Geom(p)
random variable. Now let us see why this property is called so. The lack of memory property,
in this discrete positive integer valued random variable’s case states that for any positive integers
m and n, P [Y = m + n|Y > m] = P [Y = n]. To understand what it means, let’s look at the
concrete example of the coin tossing experiment, where one keeps on tossing a coin with P (H) = p,
till the first Head appears and one observes the total number of tosses required to get there. The
lack of memory property states that, given the fact that the number of tosses required to obtain
the first Head is more than m, the probability that one has to toss it for another n times to get
the first Head, is same as the probability of the required number of tosses equalling n in a new
experiment where one starts counting afresh. The fact that one has already tossed m times and has
not observed a Head yet, is of no consequence, and as if the experiment is starting anew all over
again from the m + 1-st toss. Or in other words, the counting (total number of tosses) process has
forgotten that already the coin has been tossed m times without any success of obtaining a Head.
Hence is the name of this property.

What is even more remarkable, is the fact that among all discrete random variables with the set of
positive integers as its support, it is only the Geom(p) that has this lack of memory property. First
note that the lack of memory property of the Geometric random variable Y may be alternatively
viewed as follows:

P [Y > m + n|Y > m] =
P [Y > m + n & Y > m]

P [Y > m]
=

P [Y > m + n]

P [Y > m]
=

qm+n

qm
= qn = P [Y > n].

Now consider an arbitrary positive integer valued random variable Y , which has the lack of memory
property P [Y > m + n] = P [Y > m]P [Y > n]. We are to show that such Y must be a Geometric
random variable. For this purpose it will suffice to show that P [Y > n] = qn for some q. Define
q = P [Y > 1] satisfying P [Y > n] = qn for n = 1. Thus since the assertion is true for n = 1, the
assertion will be proved by induction if one can show that P [Y > n] = qn ⇒ P [Y > n + 1] = qn+1.
By the lack of memory property,

P [Y > n + 1] = P [Y > n]P [Y > 1] = qnq = qn+1

where the second equality follows from the induction hypothesis of P [Y > n] = qn and the definition
of q. This proves that among all positive integer valued random variables, it is only the Geometric
random variable that has the lack of memory property.

2 Continuous Models

Appendix

> pmfplot <- function(x,p,s)

+ {

+ n<-length(x)

+ plot(range(x),range(p),type="n",xlab="x",ylab="p.m.f.",main=s,font.main=1,

+ cex.main=1)

+ for(i in 1:n)

+ {

+ lines(c(x[i],x[i]),c(0,p[i]))

+ points(x[i],p[i],pch=20)
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+ }

+ }

> cdfplot <- function(x,f,s)

+ {

+ n<-length(x)

+ plot(range(x)+c(-1,1),c(0,1.05),type="n",xlab="x",ylab="c.d.f.",main=s,font.main=1,ce

+ arrows(x[1],0,x[1]-1,0,length=0.1)

+ points(x[1],0,pch="(")

+ for(i in 1:(n-1))

+ {

+ lines(c(x[i],x[i+1]),c(f[i],f[i]))

+ points(x[i],f[i],pch=20)

+ points(x[i+1],f[i],pch="(")

+ }

+ arrows(x[n],1,x[n]+1,1,length=0.1)

+ points(x[n],1,pch=20)

+ }
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