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1 Problem Formulation

Here we take up an example where we illustrate how to carry out Bayesian analysis of a
real-life problem, on which some of you are already working. Here the problem is to define
and estimate an elusive quantity called “true demand” of cars across different trims of a
certain make and model. Conceptually this demand exists at different levels - starting from
the most granulated level of the dealers, to DMA’s, to different geographical regions of the
country, to the last node of the hierarchy at the national level. Here we shall illustrate how
to do it at the DMA level, though the methodology would essentially be the same for some
other levels in the hierarchy as well.

Here we are interested in estimating the DMA level true demand for a trim of a certain
make and model which has 6 trims. For this purpose we have observations on different
variables, the structure of which will be described shortly, for 60 DMA’s for 10 months. But
before describing the data we first need to formally define the nature of the true demand,
which is intrinsically assumed to be unobservable, and thus forms the parameter of the
model. It is true that the sales, measured in terms of number of units, is reflective of the
demand, but these sales figures by themselves are not true demands. Taking a cue from this
basic assumption that sales reflect true demand, for j = 1,2,...,6 and 7 = 1,2,...,60 we
define the true demand of the j-th trim in the i-th DMA as the quantity m;; which gives
the probability that a certain customer in the ¢-th DMA, who has already made up her
mind about the make and the model, would want to buy a car belonging to the j-th trim.
Thus 0 < m;; < 1 and Z?:l mi; = 1 Vi =1,2,...,60. In this case study we shall see how
to estimate or more broadly draw inference about the parameters m;;’s modeling the true
demand.

Looking back at the definition of ;;’s, it is obvious that the most critical observation that
we shall need to draw inference about them would be the sales figures of the j-th trim for
the -th DMA. Thus for any given month if n; cars of the given make and model have been
sold in the ¢-th DMA, with Yj; of them belonging to the j-th trim so that Z?Zl Y = n;,
then Y;=(Yi,...,Yis) ~Multinomial(n; m;1,...,ms). Note that although n;’s are random
variables as well, we do not need a stochastic model for them in order to draw inference about
the m;;’s because m;;’s give trim wise demand (which we are interested in) given the demand
for the given make and model. The stochastic behavior of the n;’s would be of interest and
would have been necessary to model if we were interested in estimating the demand of that
particular make and the model instead.

Given only monthly observations on the Y,’s it is fairly straight-forward to draw inference
about the m;;’s. For instance, suppose in general there were J trims, / DMA’s and we had
observations for M months, with Y;;,, denoting the number of units sold in the j-th trim in



the i-th DMA in the m-th month, for : = 1,2,...,I, 7 =1,2,...,J and m = 1,2,..., M;
and apriori (w1, ..., miy)~Dirichlet(c, . . ., a;5). Then assuming that the observations were
independent from month to month (a very bad assumption indeed, but we have to work
with this wrong assumption for the lack of appropriate time series models for such discrete
observations), from the structure of the Multinomial p.m.f. and Dirichlet p.d.f., it is a
straight-forward exercise to show that the posterior of (m;,...,mj,...,my) in this case
would have been Dirichlet(ci;; + Yi1, ..., + Yij, ..., aiy + Yiz), where Yy, = M Vi

For the case study at hand however, we have additional information apart from the Yl-m’s,
where Y ;,=(Yiim, - - -, Yism). One such information is the ADI values d;;,,,’s computed using
click-stream data on behavior of potential customers in the web, for the j-th trim in the
i-th DMA, in the m-th month, expressed in terms of proportions so that 0 < d;;,, <1 and
ijl dijm = 1Vi=1,...,1 and m = 1,..., M. Intuitively these d;;,,’s are supposed to be
a proxy for the parameters m;;’s of interest. However these ADI values do not tally with
the observed sales values Y ;,,,’s very well which in turn are supposed to be a good reflection
of the true demand. Now we have a situation which is tailor-made for Bayesian analysis.
We have some prior information about the 7;;’s expressed in terms of the d;;,’s and then
we have the concrete sales data, distribution of which directly depends on the 7;;’s as a
Multinomial distribution. The Bayesian frame-work will now allow one to utilize both these
streams of information. Thus with the model for the observed sales data already in place
(viz. Y iy ~Multinomial(m;, ..., my) YVm = 1,..., M), now the task is to model the prior
distribution of the 7;;’s using the d;j,’s.

If we had no other information available, at this stage there would have been several
choices for modeling the Dirichlet prior for the m;;’s utilizing the d;;n,’s. One such would
be a naive choice of a;; =djj.=4; >M_ d;jm. A slightly better approach would be that of a
hierarchical Bayesian, where one puts a second stage prior on the Dirichlet hyperparameter

(cit, - - -, i) as let’s say a Multivariate Normal distribution with mean vector (dit., ..., d;y)
and L SN (dijm — dij.) (dijim — dij.) as the (4, j')-th element (4, ;' = 1,..., J) of its variance-

covariance matrix. Other approaches are also possible.

Here however we still have additional information in terms of the age of the sold cars.
Thus let z;5, denote the average age of the sold cars in the i-th DMA, j-th trim and m-
th month. These z;;,’s are computed as follows. Suppose at the beginning of the m-th
month, i-th DMA starts with an inventory of v;;n, cars in the j-th trim, with the k-th such
car being a;jmi days old i.e. this car is lying in the parking lot without being sold for last
aijmk days. Now suppose among these v;j,, cars, u;, of them get sold within that m-th
month with the k-th one sold when it was awmk days old, aijmr < awmk < @ijmk + 30.
{Zu”m Umk + Y pam u”m(a”mk + 30)} This gives the average age of the

Um

sold cars, because 3,77 Z]mk, the first term in the curly braces gives the total age of the
cars that were actually sold in the m-th month (of which there are w;;,, of them), while
ZU”’"_“”’" (a;jmk +30) gives the total age of the cars that remained unsold till the end of the
month (of which there are vjj, — u;jm of them), and thus the total term within the curly
braces gives the total age of the cars in the j-th trim for the i-th DMA during that m-th
month. Now since the number of cars sold equals u;jm, Zijm defined as above yields the
average age of the sold cars. Though the above formula for z;;, might look a bit ad hoc, it

Then z;jm, =

uzm
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may be given a theoretical justification as follows. If one assumes that the number of days
spent in the parking lot by a car before getting sold has an exponential distribution, which
is a very reasonable model, and then attempts to estimate the mean of this exponential
distribution using the ages of the cars, with the ones not sold regarded as right-censored,
then one will come up with the above formula as the MLE of the mean.

Now we shall refine our model further with this additional information on the z;j,’s. The
Tijm's are used for refining both the model as well as the prior. Recall that our basic
model is Y, ~Multinomial(m;,...,my) Ym = 1,..., M. Now since we are making the
(quite unreasonable) assumption that the monthly sales figures are independent, in effect
it is essentially same as assuming as if we had /M many independent DMA’s and we have
observation only for one month for each of them. Since we want to allow the m;;’s to vary
from DMA to DMA (expressed through their dependence on i), forgoing the time series
structure, we now have Y;;,,’s independent Multinomial(7;1y, - - ., Tism) @s our basic model.

Now we want to utilize the z;;,’s to further model the 7;;,’s, which is done as follows.
Intuitively, if a ;jm, is small, that will lead to a large z;j,. Thus conceptually though
Tijm 1S the cause and z;;n, is the effect (since we are modeling m;;n, as the true demand
which basically controls both the z’s and the Y’s), if we can write 7, as a one-to-one
function of z;;,, then the (conceptual) causal relation between 7, and z;j, may be viewed
as the inverse of this function. The reason for taking this approach is that one has to be
careful in modeling this relationship by keeping in mind that 0 < m;;,, <1 and E‘j]:l Tijm =
1. One such one-to-one functional relationship between 7;;,, and ;;,, ensuring the above
constraint for the m;;,’s may be expressed in terms of the logistic regression relationship
Tijm = 1 /(1 + e_ﬂio_ﬂf”iﬂ'm) , so that the causal relation between m;;,, and z;;, is given by
Tijm = —Bjo + (1/B;1) 10g(7ijm/(1 — Tijm)), which may be interpreted as follows. If the log-
odds of a customer demanding a car in trim-j increases, then the waiting time of selling the
car measured in terms of its mean, decreases provided 3;; < 0. For instance, if 8;; = —0.001
and it is 1.1 times more likely for a customer to demand a car in trim j than other trims,
then the expected waiting time to sell the cars in trim-j will decrease by 95 days. Thus
finally our model for the sales observations Y ;,,,’s is as follows.

Yim ~ Multinomial(mlm, cen ,7TZ'Jm), Y11, ey YIM independent 1
with 7jm =1 /(1 + e*@‘O*@'lﬁﬂiim) (1)

Above model is called the multinomial logit model. The model ensures that 0 < 7, < 1.
To ensure that Z]J:lmjm = 1, we assume the above logit structure for the m;;,’s for j =
1,...,J —1 and then set m;5,, = 1 — 3]:—11 Tijm- A typical multinomial logit model though
is specified in a slightly different manner. We did not take the standard approach because

of our ultimate interest in the m;;,,’s instead of the usual typical interests in the 5j-’s.

A couple of remarks regarding model (1) are in order. First note that we are assuming
that the m;;,’s are essentially dependent on j, expressed in terms of 8, and 3;;. Thus these
parameters essentially control the way the demand varies from one trim to another. The effect
of a DMA on the demand on the other hand is assumed to be determined by an observable
quantity, which at least on the surface appears to be reasonable. The second comment is
about the assumption of the logit structure. It is an assumption and one could surely try



other models. For instance one can try the probit model given by m;j,, = ®(Bj0 + Bj1%ijm)
where ®(-) is the standard Normal c.d.f.. Or one could try m;j, = F(Bjo + Bj1%ijm) for any
continuous c.d.f. F(-). Here however for computational convenience we shall work with the
logit model.

Now we discuss how to use the d;;,’s, the ADI values, to come up with the prior distri-
bution in presence of the additional information z;;,’s. Model (1) has 2(J-1) parameters
((B10, B11), - - -5 (Bs=1,0, Bs-1,1)), on which we are to put a prior. Since (5o, 5;1) are the pa-
rameters for the j-th trim we first assume that (8;0, 3;1) and (8,1, 8;:1) are independent for
j # j'. Next we assume that (Bjo, 851) ~Na(m;, ;) where (u;,X;) are the prior hyper-
parameters. Thus for specifying the prior we need to specify this prior mean p; and the
prior variance-covariance matrix 3; of (5,0, 8j1). We utilize the d;;,,’s to specify these prior
hyper-parameters as follows.

Recall that the d;;,’s are sort of the prior values of the m;;n,’s. Now in model (1), (B0, 51)’s
are related to the m;;,,’s through the logit relationship involving the z;;»,’s. Thus for speci-
fying the prior for (8o, 5j1), it is natural to examine the same logit relationship of the d;;n,’s
with the z;;n,’s. Thus we first propose the following simple linear regression model

log (ﬂ%) = Bjo + Bin%ijm + €ijm  €ijm’s 1.i.d. N(0, 012-) (2)
- Wym

and then take the posterior distribution of (5o, 5;1) resulting from (2) with a non-informative

prior on (B0, 8;1) as the prior for (B;o, 3j1) of model (1). Since the posterior of (5;0, 5j1)

of model (2) with the non-informative prior (5,0, ﬂjl,aj)oci is approximately bivariate

Normal with mean same as the MLE and variance-covariance matrix same as the inverse of

the observed information matrix', we take p; to be the MLE of (8o, 3;1) of model (2) and

I M
IM i=1 Zmzl Tijm
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(2).

This completes the formulation of the problem. Note that the prior specification in terms
of specifying the (p,j, 3;)’s as discussed in the last paragraph can be carried out using any
standard statistical software, and thus need not be coded in WinBUGS reducing its computa-
tional burden. These prior values are simply going to be read from an external data file in
WinBUGS. However the posterior of (8o, 8;1) of model (1) with (8o, 8j1) apriori No(p;, ;)
cannot be obtained in closed form and thus we have to code it and get it computed using
WinBUGS.

!The exact marginal posterior of (8o, ;1) is bivariate ¢ with the same location and scale as that of the
approximating bivariate Normal, with TM — 2 d.f.. But since in our case IM = 600, this bivariate ¢ with
IM — 2 d.f. is practically identical to the corresponding approximating bivariate Normal.



2 Data Analysis

We start our discussion with a description of the data set. We initially had 60 DMA’s, 6
trims and data for 10 months, and for each of these we had observations on monthly sales,
ADI values and the corresponding x-values. However there were quite a few NA’s for the
x-values, and thus though WinBUGS and R can handle NA’s, to avoid unpredictable behavior,
I first eliminated the records containing NA in at least one of its fields. Thus finally we had
401 records with 3 x 6 = 18 fields. Each record corresponds to a certain month of a DMA,
and since we are not modeling the DMA and month separately, from now on we shall use
the single subscript i (instead of the two subscripts ¢ and m as in §1) to denote the i-th
record, which is a combination of a certain DMA in a certain month with no NA in any its
fields. Each record has 3 types of fields: y-field, x-field and d-field corresponding to the
sales values, x-values and the ADI values, with each of these in turn containing 6 fields each
corresponding to the 6 trims.

We shall first study the relationship between the d[i,j1’s and x[i, j1’s through (2) inR in
order to come up with the hyperparameters (uj, 3;)’s. Then we use these in WinBUGS essen-
tially to generate MCMC samples of posteriors of (8;, ;1) in the model (1) with (50, 5;1)~
Na(p;,3;) and output these as CODA files. Then these CODA files are again read into R for
convergence diagnostics and the final Bayesian Analysis. We shall skip the basic R com-
mands to get the initial data into the workspace, cleaning it, naming the variable etc. and
shall only discuss the commands that are of data analytic interest.

2.1 Prior Specification

Logit of the d[i,j] values are stored in 1dj i.e. 1d1 contains the logit of d[i, 1], 1d2
contains the logit of d[i,2] etc.. For obtaining the prior mean and dispersion of (5,9, 3j1)
using (2) we thus simply need to regress 1dj on xj containing the x[i,j] values for 5 of
the 6 j’s and pick-up the estimates of (5o, 51, 012-) and the so-called X’'X matrix from the
output to prepare the mean vector and precision matrix of (5o, 5;1) to be supplied for the
subsequent WinBUGS computation. We illustrate the R commands to do these for j = 1 as
follows.

> 1m1<-1m(1d1~x1cln,x=T)
> summary (1mil)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -9.284e-01 3.141e-02 -29.557 <2e-16 *xx
x1lcln 1.216e-05 2.723e-04 0.045 0.964

Residual standard error: 0.3115 on 399 degrees of freedom
Multiple R-Squared: 4.999e-06, Adjusted R-squared: -0.002501
F-statistic: 0.001995 on 1 and 399 DF, p-value: 0.9644



> (1/(0.311572) ) *t (1m1$x) %*%1m1$x

(Intercept) xlcln
(Intercept) 4132.647 414212.8
xlcln 414212 .800 55002991.3

x1cln contains the 401 cleaned (with no NA’s) values of x1. 1m() is the R command to
build a linear model of which (2) is a special case. summary(1ml) gives the summary statis-
tics from which here we are only interested in the estimates of (B¢, 811,07) given by (-
0.9284,0.00001216, 0.3115?). From these estimates we get p,=(-0.9284,0.00001216) as the
prior mean of (B9, $11). Now note that WinBUGS requires a multivariate Normal distribu-
tion to be specified in terms of its mean vector and precision matrix instead of the usual
dispersion matrix, which is nothing but the inverse of the precision matrix. The precision of
(B10, B11) is given by %X'X. Of these 6 has already been obtained as 0.3115. The X matrix
of a regression model can be obtained as an 1m-object$x in R , provided the x=T flag was on
while creating the 1m-object, as is the case for the 1m-object 1m1 at hand. Thus t(1m1$x)
gives X', the transpose of the X matrix and using the matrix multiplication operator %%,
(1/(0.31152) ) %t (1m1$x) %*%1m1$x gives us the precision matrix ;' of (B0, B11). Now the

1 4132.647  414212.8
values p; =(-0.9284,0.00001216) and ;" = 414912.800 55002991 3
a data file to be read by WinBUGS as the hyperparameters of the prior of (519, 511) of model
(1), which is assumed to be bivariate Normal.

will be specified in

It is customary to do a model checking for a regression analysis. For this we present three

plots for the model 1m1 below: Residuals vs Fitted Normal Q—-Q
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The first plot, called the scatter plot, simply plots the dependent variable 1d1 against the
independent variable x1cln. We should expect to see a negative association between the
two. Though the scatter plot gives such a loose impression, the estimate of 1; has turned
out to be positive and more importantly it is not significant according to the frequentist
p-value. Indeed the posterior probability of £;; > 0 is 0.518 and thus there is no reason to
believe that 811 < 0 or even the other way round. What it means is that there is probably
no association between 1d1 and x1cln. But this should not be construed as a hindrance for
specifying the prior using this method, because the prior of £;; in this case is going to be
fairly highly concentrated near 0, as has been depicted by the data.



The second plot, called the residual plot checks whether there is still any pattern left in
the data that has not been captured by the regression model and it also provides a check
for the homoscedasticity assumption. Both of these seem to be loosely okay with the model.
The third plot provides a graphical check for the Normality assumption. Since the plot
appears to be more or less falling on a straight line, the normality assumption also appears
to be approximately correct. Incidentally these two plots were generated using the command
plot.1lm(1lml, which=1:2) inR .

We finish this section by assorting the R outputs and plots for the remaining 4 cases. It
should be remarked at this point that model (2) could not be fitted for the original trim 4
because of a near singular X matrix, and thus this became our natural choice of the trim
for which we do not provide the 3;.’s and the corresponding ;;’s are found via subtraction.

> 1m2<-1m(1d2~x2c1n,x=T)
> summary (1m2)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -1.0486097 0.0314140 -33.380 < 2e-16 **x
x2cln -0.0006844 0.0001999 -3.423 0.000683 x**x

Residual standard error: 0.31 on 399 degrees of freedom
Multiple R-Squared: 0.02853, Adjusted R-squared: 0.0261
F-statistic: 11.72 on 1 and 399 DF, p-value: 0.000683

> (1/(0.3172) ) *t (1m2$x) %*%1m2$x

(Intercept) x2cln
(Intercept) 4172.737 570509.9
x2cln 570509.886 103030031.2

> plot(x2cln,1d2)
> plot.lm(1m2,which=1:2)

Residuals vs Fitted Normal Q—Q
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> 1m3<-1m(1d3~x3cln,x=T)
> summary (1m3)

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -2.316e+00 3.038e-02 -76.229 <2e-16 **x
x3cln 9.921e-05 1.578e-04 0.629 0.53

Residual standard error: 0.3714 on 399 degrees of freedom

Multiple R-Squared: 0.0009902, Adjusted R-squared: -0.001514
F-statistic: 0.3955 on 1 and 399 DF, p-value: 0.5298

> (1/(0.317472) ) *t (1m3$x) %*%1m3$x

(Intercept) x3cln
(Intercept) 3980.435 607070.9
x3cln 607070.920 147609416.3

> plot(x3cln,1d3)
> plot.1lm(1m3,which=1:2)
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> 1m5<-1m(1d5~x5c1n,x=T)
> summary (1m5)

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -1.4929528 0.0297141 -50.24 < 2e-16 ***
x5cln -0.0008519 0.0001836 -4.64 4.72e-06 *x*xx
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F-statistic: 21.53 on 1 and 399 DF, p-value: 4.724e-06

> (1/(0.350372) ) *t (1Im5$x) %*%1m5$x

(Intercept) x5cln
(Intercept) 3267.865  427552.5
xb5cln 427552.453 85611435.9

> plot(x5cln,1d5)
> plot.1lm(1mb5,which=1:2)

Residuals vs Fitted Normal Q—Q
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> 1m6<-1m(1d6~x6¢cln,x=T)
> summary (1m6)

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -2.2576785 0.0295908 -76.297 <2e-16 *xx*
x6¢cln 0.0002054 0.0001376 1.493 0.136

Residual standard error: 0.3633 on 399 degrees of freedom
Multiple R-Squared: 0.005555, Adjusted R-squared: 0.003062
F-statistic: 2.229 on 1 and 399 DF, p-value: 0.1363

> (1/(0.363372) ) *t (1m6$x) %*%1m6$x

(Intercept) x6c¢cln
(Intercept) 3038.181 516225.5
x6¢ln 516225.513 140562801.4

> plot(x6cln,1d6)
> plot.1lm(1m6,which=1:2)



Residuals vs Fitted Normal Q—Q
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Before proceeding to MCMC computation of the posterior of 8;.’s, it may be remarked that
while the Normality assumption in all the five cases above look satisfactory, a couple of them
might have some problem with homoscedasticity and none of them has problem with the
assumed linear structure in (2). Also it is interesting to note that only when the estimated
Bj1 turned out to be negative, as per the expectation, as in the case of trims 3 and 5, they
became significantly so. For the remaining 3 trims, the estimated values are positive and
they are not significant meaning that these (3;i’s priors will be pretty much concentrated
around 0, while for the other two they will be fairly heavily concentrated in the negative
axis.

2.2 MCMC Computation

The model in (1) with independent bivariate Normal prior for the (50, 5;1)’s may be coded

for WinBUGS’ model specification file as follows:
model

{
for(i in 1:401)
{
y[i,1:6] dmulti(pili,1:6],n[i])
for(j in 1:5)
{
logit(pili,jl) <- betalj,1] + betalj,2]1*x[i,]]
}
pili,6] <- 1 - pili,1] - pili,2] - pili,3] - pili,4] - pili,5]
}
for(j in 1:5)
{
betalj,1:2] ~ dmnorm(mulj,1:2],T[j,1:2,1:2])
}
}
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Together with the above model file, WinBUGS is supplied with two data files - the first one
containing 401 x (1 +6+6) n[1, y[,]1 and x[,] values, with n[i] :E?=1y[i,j]; and the
second one containing the mu[,] and T[,,] values as obtained in §2.1. Given these, WinBUGS
automatically figures out that, since no data has been specified for the stochastic betal,]
nodes, those must be our parameters of interest and starts simulating from their conditional
distributions given the values specified for other stochastic and constant nodes (like mul, ]
and T[,,]) as per the specified model. This is nothing but the posterior of our interest.

Typically one has to decide on three or four parameters while running an MCMC. In order
to determine these parameters one typically first have to make a pilot run. Ideally one makes
a pilot run of decent enough length, say in the order of 10,000 or so after discarding some
initial (ad-hoc number of) observations. Then run a Raftery-Lewis diagnostics on this pilot
chain to get an idea about the optimal values of the parameters that one should use for the
MCMC run.

Here to minimize effort, I have taken a mixed approach, wherein part of the final sample
itself is obtained from this pilot run, with some of the parameters, like the length of the
burn-in phase and the thinning interval decided during the initial pilot run itself, with
only the final sample size required deferred to the Raftery-Lewis analysis on this pilot run.
Of course the parameter values settled upon during this pilot run was later cross-checked
against Raftery-Lewis, but it must be cautioned that this approach should be reserved for
experienced users only, and newcomers to MCMC should take the approach mentioned in
the above paragraph. The issues involved in determining these parameters of the MCMC
runs is discussed below in detail.

The first thing one needs to decide is the length of an initial burn-in period so that one starts
storing the data only after this initial burn-in phase is over with the hope that the chain has
now stabilized to its invariant distribution. This may be decided by looking at the trace
plot obtained by pulling down the item samples.. from the inference menu of WinBUGS,
or keep updating till WinBUGS is saying that it is in adapting mode, or run Raftery-Lewis
on a pilot run (the recommended approach). In this example WinBUGS was in an adapting
mode till the first 4000 iterations. The dynamic trace plot indicated convergence problem
only till the first couple of thousands iterations. But to be on the safer side I decided on a
burn-in phase of 4000.

The next issue is for how long a chain is to be run. Of course the answer is, the more the
merrier, but an idea about the minimum required sample size may be obtained using the
Raftery-Lewis diagnostics tool on a pilot run. This problem of required run length also gets
compounded with the fact that most of the subsequent estimation methods (based on the
MCMC sample) depend on observations being independent, and the consecutive values from
the MCMC run are not. This leads to the next consideration called the thinning interval.

With a thinning interval of k, one keeps storing every k-th value (after the initial burn-in
phase) discarding the in between k —1 generated values. The value of this k¥ may be obtained
by studying plot of the autocorrelation function on a pilot MCMC run. Take k to be that
number where the autocorrelation has almost died down to 0. Raftery-Lewis also provides
an estimate of both the length of the chain and the number of independent samples required,
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and thus giving one an idea about the optimal thinning interval. For this example, based on
the autocorrelation plots, a k value of 50 seemed like a reasonable choice. But as mentioned
above, the final sample size was decided based on Raftery-Lewis on this pilot run, which as
also used to cross-check and validate the currently ad-hoc decision of a burn-in phase of 4000
and thinning interval of 50

Finally it is advisable to run multiple chains starting with disperse initial values, because
many diagnostic convergence tests, most notably the Gelman-Rubin, require outputs from
multiple chains. A minimum of 2 to up to 5 parallel chains may be run for these convergence
diagnostic checks. Other than the convergence diagnostics, multiple chains also have some
other benefits. Note that if the initial burn-in phase is small, one can forgo the issue of the
thinning interval and run a large number (say, as suggested by Raftery-Lewis) of parallel
chains starting from a disperse set of initial values and picking only the final value after
the burn-in phase from each chain. These will give an i.i.d. sample from the invariant
distribution. However in practice for complicated models, with parameters having a high
degree of correlation, one encounters what is called slowly mixing chains. In such situations
it typically takes a long burn-in period to achieve stationarity. Thus most often than not this
approach does not turn out to be economical and one usually adapts the thinning interval
approach from one long chain which approximates the i.i.d. property of the generated MCMC
sample. However a mixed strategy where one runs a moderate number of moderate sized
chains is possibly the most pragmatic approach that one can take. Here for the final run we
have taken this mixed approach which is described towards the end of §2.3, but before that
all these considerations are first summarized in Table 1 below.

Table 1: Some Considerations for Running MCMC

‘ Issue ‘ Meaning ‘ Guideline
1. Run Raftery-Lewis on a pilot chain with no
discards.

. How many 2. Look at the dynamic trace plots and continue
Burn-in . i . . ]
Phase initial samples till the plots look stationary i.e. oscillating

to discard? around some mean value without exhibiting
any trend.
3. Wait till WinBUGS says adapting.
1. Equals the “dependence factor” of the
N How frequently Raftery-Lewis output run on the pilot chain.
Thinning . s
Interval to sample from 2. Look at the autocorrelation plot till it comes
the final chain? down to 0. The lag where the autocorrelation
is 0, is the ideal thinning interval.
Chain How large a sample Run Raftery-Lewis on a pilot chain
length should we draw? '
1. 2 to 5 for running the Gelman-Rubin
Parallel How many dlagnostlcs. . .
Chains chains to run? 2. Derive from the sample size recommendation
of Raftery-Lewis on a pilot chain and the time
it takes to run a given chain length.
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In this example in the pilot run we first ran 5 parallel chains with randomly generated
initial values for each chain. Since WinBUGS was in the adapting mode for the first 4000
iterations, we decided on a burn-in period of 4000 7.e. the initial 4000 values are simply
discarded and we started storing the generated values only thereafter. Then each of the 5
chains were run for 10,000 more iterations. This was simply an ad-hoc choice and the final
required number of samples was decided only after running a Raftery-Lewis on these pilot
samples. For checking convergence, all the beta’s thus generated were output using coda.
Note that we kept a thinning interval of 1 in spite of a significant autocorrelation till up
to the 50-th lag because it will be taken care of in the subsequent analysis in R. Thus the
script file used to run this MCMC in WinBUGS was as follows:

display(log)

check (My_Files/Trilogy/Example/model.txt)
data(My_Files/Trilogy/Example/datmat.txt)
data(My_Files/Trilogy/Example/prior.txt)
compile(5)

gen.inits()

update (4000)

set (beta)

update (10000)

thin.updater (1)
coda(*,My_Files/Trilogy/Example/output)

The log file 1og.odc was then interactively generated mostly using the inference menu of
WinBUGS. However the subsequent analysis using the MCMC output is better done outside
WinBUGS using R, which we take up next.

2.3 Convergence Diagnostics

As mentioned in §2.2, it is better to use WinBUGS only for generating the MCMC samples.
WinBUGS, though tries to provide some of the subsequent analyses, features like tools for
convergence diagnostics and inference about not just the parameters themselves but other
parametric functions of interest like the m;;’s of this example, are either very weak or non-
existent in WinBUGS. For these analyses it is best to request WinBUGS to output the MCMC
samples as plain text files using its coda command (as in the last statement of the above
script file or by pulling down samples.. from its inference menu) and then read these
files into R using one of its coda suit of functions. Thus we now first get into R, upload its
coda library and start the next stage of analysis in there as follows.

library(coda)

di1<-read.coda("outputl.txt","outputIndex.txt",thin=50)
d2<-read.coda("output2.txt","outputIndex.txt",thin=50)
d3<-read.coda("output3.txt","outputIndex.txt",thin=50)
d4<-read.coda("outputd.txt","outputIndex.txt",thin=50)
d5<-read.coda("output5.txt","outputIndex.txt",thin=50)

V V. V V V V
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I prefer to work from scratch (because it gives me more control over the things I want
to do), but if you want, you can also issue the R command codamenu() (of course only
after attaching the coda library to your current R workspace) and then work interactively
with it to read the files, run convergence diagnostics and do only those things this menu
allows you to do. Each of the 5 output files contains 10,000 MCMC samples generated from
the joint posterior of the 2 x 5 = 10 beta’s for the 5 chains we have run (specified as the
compile(5) command in the script file). But these output files are not organized in a
spreadsheet format with 10,000 rows and 10 columns, with each column corresponding to
a beta. For each chain WinBUGS outputs all the 10,000x10=100,000 values in one single
column of a file (and thus as many files as the number of chains run) and then supplies
an index file (outputIndex.txt in our case) stating which sets of rows correspond to which
beta’s, which is required and utilized by read.coda. codamenu() will also prompt you asking
for the name of this index file, when you ask it to read an MCMC output file generated by
WinBUGS.

Now recall from the autocorrelation plots in 1og.odc that we should have possibly used a
thinning interval of 50, whereas while running the WinBUGS script we had kept the thinning
interval as 1 (using the thin.updater (1) command mentioned in the script file). It was
also mentioned there in §2.2 that it will be rectified later in R. This is precisely what the
option thin=50 is doing in the read.coda commands above. That is in the end, for j=1,..,5,
each of the dj’s will contain a 200x10 matrix with the columns corresponding to the beta
values and the rows corresponding to the iteration numbers. Since originally there were
10,000 values for each beta, and we are using a thinning interval of 50, it will contain 200
rows, with the first row corresponding to iteration number 4001, second row corresponding
to iteration number 4051 etc. to the last or 200-th row corresponding to iteration number
13951. It starts at 4001 because we had used a burn-in phase of 4000.

Now we are ready to proceed to the next phase. But before doing so we shall first collate
the 5 dj’s into a single MCMC object of R using the command

> d<-mcmc.list(d1,d2,d3,d4,d5)

so that the diagnostic checks requiring multiple chain outputs like Gelman-Rubin find them
in one place. Actually Gelman-Rubin is the only formal convergence diagnostic test that
WinBUGS also provides, but we shall nonetheless demonstrate all the features that the coda
library of R provides for the MCMC outputs from WinBUGS, with the risk of some repetitions.
We start with some plots with the commands

> plot(mcmc.list(d1[,1:4],d2[,1:4],d3[,1:4]1,d4[,1:4]1,d5[,1:4]))
> plot(mcmc.list(d1[,5:8],d2[,5:8],d3[,5:8],d4[,5:8]1,d5[,5:81))
> plot(mcmc.list(d1[,9:10]1,d2[,9:10]1,d3[,9:10]1,d4[,9:10]1,d5[,9:101))

These three commands were actually issued for embedding the plots in this document for
creating three different postscript files. In an interactive session this is not required and a
simple s plot(d,ask=T) will produce these 20 plots screen by screen.
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The plot command for an mcmc object by default produces these trace plots and density esti-
mates. These plots are also available in WinBUGS from the samples.. item of its inference
menu. The thing to note is that from these trace plots (or the history plot in WinBUGS) it
appears that the chain has converged to its stationary distribution. This is the first rough
check for convergence and one of the most useful ones. Next we start with some formal
diagnostic checks.

The first one of such is the Gelman-Rubin scale reduction factor. The idea behind this
diagnostic check is as follows. Suppose one runs m parallel chains each of length n for a
certain parameter §. Now consider the quantity o2, the posterior variance of #. Two different
estimates of o2 may be constructed. The first estimate, say s? is the variance of all the mn
values pooled together, and the second one, say s3 is the average variance of the m chains,
each one computed using the n values in the chain. If all the chains have converged to the
stationary distribution then s? and s3 will be close to each other yielding a common estimate
of 0. Otherwise, s? will overestimate and s2 will underestimate 0. This is because in that
case the values sampled by the m chains will be far apart from each other depending on the
initial values with which each chain was started, and thus as a result of pooling all the mn
values together s? will yield an overestimate of 02. On the other hand in this case, where the
chains have not converged, the m chains have not had time to traverse the entire posterior
spectrum of # and as a result the variance of each individual chain and thus their average

s3 will underestimate o?. Gelman-Rubin’s scale reduction factor is the ratio r ~ s7/s22.

2 Actually the exact formula is a little more complicated, which is based on Analysis of Variance results
and approximation of the posterior of 6 using a ¢ distribution. Whatever the exact formula might be, the
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Thus in the beginning one would expect to see an r value much larger than 1. Then as the
iteration proceeds the r value should approach 1. A point estimate and a 97.5% quantile (an
upper bound) of r at the end of the iteration and their evolution as the iteration proceeds
is produced by the following commands.

> gelman.

diag(d)

Potential scale reduction factors:

betall,1]
betall,2]
betal2,1]
betal2,2]
betal3,1]
betal3,2]
betal4,1]
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Point est. 97.5% quantile

1.
.01
.01
.01
.00
.01
.00
.00
.00
1.

i e

01

00

1

I e = T T = =Gy S

1

.04
.02
.01
.02
.01
.02
.00
.00
.01
.01

> gelman.plot(memc.list(d1[,1:4],d2[,1:4],d3[,1:4],d4[,1:4],d5[,1:4]1))
> gelman.plot(memc.list(d1[,5:10],d2[,5:10],d3[,5:10],d4[,5:10],d5[,5:10]))
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idea behind the Gelman-Rubin convergence diagnostic check is as described above.
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Again just one command gelman.plot(d) would do for the interactive session. To produce
hard-copies or embedding them in documents you need to suitably break-up the plots. The
r values look fairly satisfactory once more confirming convergence. These plots are also
produced by WinBUGS (use bgr diag after pulling down the inference menu’s samples. . .)
and thus so far we have not got anything additional in the coda suit of tools.

Now we shall look at a few more convergence diagnostic tools which are only available in
the coda library of R, which are not available in WinBUGS. Also since these diagnostics do not
require multiple chains we shall only apply them on one of the chains, to reduce the volume
of the output. Results of these diagnostics checks obtained for other chains are similar.

The first such check is due to Geweke. The idea behind this check is as follows. The first
and the last part of a chain is obtained. By default one takes the first 10% and the last
50% of the chain. Then one examines whether the means of these two parts are same or
not using a Z-statistic. Since the values are autocorrelated the usual Z-test does not work.
Geweke’s suggestion was to estimate the variance using the spectral density at 0 for the
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estimated standard error in the difference of the two means. The diagnostic test essentially
churns out a Z-statistic. If the value of this Z-statistic is moderate, say within +2, then one
can conclude that there is no significant difference in the mean values of the two tails of the
chain and thus fulfilling another criterion for convergence. This is done as follows.
> geweke.diag(dl)
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
betal[1,1] betal[1,2] beta[2,1] betal[2,2] betal[3,1] betal[3,2] betal4,1] betal4,2]
1.4727 -0.7480 -0.7102 -0.4309 1.5776 -0.6249 -0.5872 1.0667

betal[5,1] betal5,2]

-1.1927 0.2419
Since all the Z-values appear to be quite nice, the chain seems to have converged, according
to the Geweke criterion as well. Since Geweke criterion brings up the issue of autocorrelation,
at this point it is worth examining the autocorrelation of the d1 chain. The j-th row of the
following plots gives the autocorrelation plots of betalj,1] and betalj,2].
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Note how these autocorrelation plots of the thinned chain are different from the ones provided
in log.odc for the unthinned chain. Here the values have become almost i.i.d’s.

The next diagnostic test is given by Heidelberger and Welch. This convergence test uses
the Cramer-von-Mises statistic to test the null hypothesis that the sampled values come
from a stationary distribution. The test is successively applied, first to the whole chain,
then after discarding the first 10%, 20%, ... of the chain until either the null hypothesis is
accepted, or 50% of the chain has been discarded. The latter outcome constitutes “failure”
of the stationarity test and indicates that a longer MCMC run is needed. The half-width
test calculates a 95% confidence interval for the mean, using the portion of the chain which
passed the stationarity test. Half the width of this interval is compared with the estimate of
the mean. If the ratio between the half-width and the mean is lower than 0.1, the half-width
test is passed. Otherwise the confidence interval is deemed to be too wide so that the length
of the sample is considered to be not long enough for estimation of the mean with sufficient
accuracy.

> heidel.diag(d3)

Stationarity start p-value
test iteration
betal[1l,1] passed 21 0.3490
betal[1,2] passed 21 0.5260
beta[2,1] passed 1 0.3786
beta[2,2] passed 1 0.0734
betal[3,1] passed 1 0.3902
betal[3,2] passed 1 0.5573
beta[4,1] passed 21 0.2023
beta[4,2] passed 1 0.1113
betal[b5,1] passed 1 0.3952
betal[5,2] passed 1 0.3222
Halfwidth Mean Halfwidth
test
betal[l,1] passed -1.099033 2.00e-03
betal1,2] passed 0.000566 1.18e-05
beta[2,1] passed -1.014321 2.63e-03
beta[2,2] passed -0.000533 1.60e-05
betal[3,1] passed -1.928755 2.39e-03
betal[3,2] passed -0.000928 1.29e-05
betal[4,1] passed -1.397056 2.12e-03
betal[4,2] passed -0.000248 1.19e-05
beta[5,1] passed -1.812545 2.99e-03
beta[5,2] passed -0.000684 1.45e-05

Thus our chain passed this test as well. Thus now having been convinced about convergence
we are finally in a position to request for a Raftery-Lewis recommendations for the final
sample size and a cross-check on the already decided burn-in phase of 4000 and a thinning

22



interval of 50. But recall from the discussion in the second paragraph in page 11, that this
pilot run should contain consecutive values from the chain with a thinning interval of 1. This
is required by Raftery-Lewis in order to get an assessment of the autocorrelation structure of
the chain which is required for providing recommendations for the thinning intervals. Thus
we cannot use the dj’s for this purpose, since they already have a thinning interval of 50.
But all we have to do for this is re-read one of the original outputj.txt files produced by the
coda command of WinBUGS (and this was precisely the reason for setting the thin.updater
as 1 in the script file in page 13), and then run a Raftery-Lewis on this as follows.

> pilot<-read.coda("outputl.txt","outputIndex.txt")
> raftery.diag(pilot)

Quantile (q) 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence

M) D) (Nmin) factor (I)
betal[1,1] 40 48985 3746 13.10
beta[1,2] 31 33192 3746 8.86
betal[2,1] 38 45449 3746 12.10
beta[2,2] 35 37791 3746 10.10
betal[3,1] 29 32997 3746 8.81
betal[3,2] 29 31504 3746 8.41
betal[4,1] 32 36977 3746 9.87
betal[4,2] 29 30738 3746 8.21
betal5,1] 47 52471 3746 14.00
betal[5,2] 34 37781 3746 10.10

Above Raftery-Lewis output gives M, the size of the burn-in phase, N, the total length of the
chain, Nmin, the number of independent samples, and I, the dependence factor = (M+N) /Nmin
equaling the thinning interval length; that is required, in order to estimate the 0.025-th
quantile of the respective posteriors with an error of £0.005 with 95% confidence. Note
that our burn-in phase of 4000 and thinning interval of 50 is well beyond the Raftery-Lewis
recommendations which are in the order of 40 and 15 respectively, and thus we can indeed
take the burnt-in, thinned values in the 5 dj’s as genuine i.i.d. samples from the posteriors
of the respective beta’s.

But now note that each dj contains just 200 observations on the respective beta’s and even
after pooling them together we only have a sample of size 1000 on each beta’s, whereas
Raftery-Lewis recommends a minimum independent sample of size 3746. Thus we need to
generate more sample. Since we already have an independent sample of size 1000 (from the
5 dj’s) we need to generate about 3000 more such sample. Thus following the Raftery-Lewis
recommendation now one can either run a chain of length 45,040 and then take every 15-th
observation after discarding the first 40, or run an equivalent number of parallel chains. Here
however, we decided to stick to our original burn-in phase of 4000, thinning interval of 50
and chains of post burn-in length 10,000. The main reason for doing this is, we know that we
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can achieve convergence and approximate i.i.d.-ness with these parameter values. Now if we
start with some new parameters following the Raftery-Lewis recommendation, then though
the computational effort will substantially reduce, we have to again check for convergence in
this new set-up which is not guaranteed. Since one run with our parameters yield only 200
independent samples, we decided to run 15 parallel chains with these parameters to garner
3000 additional samples from the posteriors of the beta’s. Thus we modified our original
script file as follows

display(log)

check(My_Files/Trilogy/Example/model.txt)
data(My_Files/Trilogy/Example/datmat.txt)
data(My_Files/Trilogy/Example/prior.txt)

compile(15)

gen.inits()

update (4000)

set (beta)

update (10000)

thin.updater (1)

coda(*,My_Files/Trilogy/Example/output2)

and ran this script in WinBUGS to generate 3000 additional sample on each beta’s, which are
then read into R using the commands

> d6<-read.coda("output21l.txt","outputIndex.txt",thin=50)

> d7<-read.coda("output22.txt","outputIndex.txt",thin=50)

> d19<-read.coda("output214.txt","outputIndex.txt",thin=50)
> d20<-read.coda("output215.txt","outputIndex.txt",thin=50)

2.4 Posterior Inference

Now with the samples of required size in place and convergence in order (it is not necessary

but nonetheless safe to recheck convergence using trace plots, gelman.diag, geweke.diag

and heidel.diag on these new d6 to d20, which I did and was satisfied), we are finally ready

to draw inference about the 7;;’s, the main objective of the study. The first step towards

that is to collate the beta values scattered across the 20 dj’s in one place, which is done as

follows in R.

> betalil<-c(di[,"betal1l,1]1"],d2[,"betal1,1]1"],d3[,"betal1,1]1"],d4[,"betal1,1]1"],
d5[,"betal1,1]1"],d6[,"betal1,1]1"],d7[,"betal[1,1]1"],d8[,"betal[1,1]"],
do[,"betal1,1]1"],d10[,"betal1,1]1"],d11[,"betal1,1]1"],d12[,"betal[1,1]"],
d13[,"pbetal1,1]1"],d14[,"betal[1,1]"],d15[,"betal1,1]"],d16[, "betal1l,1]1"],
di7[,"betal1,1]"],d18[,"betal1,1]"],d19[,"betal1,1]1"],d20[, "betal1,1]1"])

> betab2<-c(di[,"betal5,2]"],d2[,"betal[5,2]"],d3[,"betal[5,2]1"],d4[, "betal[5,2]"],
d5[,"betal[5,2]1"],d6[,"betal5,2]"],d7[,"betal5,2]"]1,d8[,"betal5,2]"],

24



do[,"betal5,2]1"]1,d10[,"betal5,2]"],d11[, "betal5,2]1"],d12[,"betal[5,2]"],
d13[,"betal[5,2]1"]1,d14[,"betal[5,2]"],d15[,"beta[5,2]"],d16[, " "betal[5,2]1"],
di7[,"betal[5,2]1"],d18[,"betal[5,2]"]1,d19[,"betal[5,2]1"]1,d20[, "betal[5,2]1"])
Now consider a certain DMA on a certain month with (117,196,121,186,528,179) as its 6
z-values for the 6 trims. These were the actual values for DMA 1 in month 3. Given this x
and the posterior of the beta’s we wish to draw posterior inference about the “true demand”
; of the 6 trims for j = 1,...,6. Given @, 7;’s can be determined using (1) and evaluating
this for each sampled value of the beta’s will give us the corresponding posterior of 7;’s.
These computations can be implemented in R as follows.

> beta<-array(c(betall,betal2,beta2l,beta22,betaldl,betal32,betadl,betad?,
betab1,betab2),dim=c(4000,2,5))

x<-c(117,196,121,186,528,179)

pi<-matrix(nrow=4000,ncol=6)

for(j in 1:5)

{

for(i in 1:4000)

{
pili,jl<-1/(1+exp(-betali,1,jl-betali,2,jl*x[j1))
}

}

for(i in 1:4000)

{

pili,6]<-1-sum(pil[i,1:5])

}

plot(density(pil,11))

V 4+ 4+ +V 4+ 4+ ++ 4+ +V VYV

> plot(density(pil,61))
gives the following posterior densities of the 7;’s.
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> colStats(pi,mean)
[1] 0.26255865 0.24622957 0.11496725 0.19092746 0.10218983 0.07593548
> colStats(pi,median)
[1] 0.26257294 0.24621709 0.11494511 0.19096778 0.10216789 0.08314826
> colStats(pi,sd)
[1] 0.001752156 0.002119291 0.001105897 0.001866564 0.003191142 0.003333501
> HPDinterval (mcmc (matrix(c(1:4000,pil[,1]),nco0l=2)))
lower upper
0.2591790 0.2660495
> HPDinterval (mcmc (matrix(c(1:4000,pil,2]),nco0l=2)))
lower upper
0.2421242 0.2504512
> HPDinterval (mcmc (matrix(c(1:4000,pil,3]),ncol=2)))
lower upper
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0.1127959 0.1170288
> HPDinterval (mcmc (matrix(c(1:4000,pil,4]),ncol=2)))
lower upper
0.1875233 0.1948857
> HPDinterval (mcmc (matrix(c(1:4000,pil,5]),ncol=2)))
lower upper
0.09584511 0.1082404
> HPDinterval (mcmc (matrix(c(1:4000,pil,6]),ncol=2)))
lower upper
0.07637934 0.088926214

Recalling that the original trim 4 is 57 = 6 and trims 5 and 6 are 7 = 4 and 5 respectively
it may be stated that the demands of trims 1 and 2 are highest and comparable, followed
by trims 5, 3 and 6 with the last two being comparable, while the demand for trim 4 is the
least. Interestingly the ADI values for the 6 trims for this DMA was (0.2349, 0.1635, 0.1919,
0.0929, 0.2046, 0.1122) none of which are contained in the 95% HPD interval. The trim-wise

sales value for this observation was (1, 1, 3, 3, 0, 0, 3).
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