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3.1 Introduction

In the previous Chapter on Elementary Probability Theory, we learned how to calculate
probabilities of non-trivial events i.e. event A 6= φ or Ω. While they are useful in elemen-
tary probability calculations, for practical applications and in particular for development
of statistical theory, we are typically interested in modeling the distribution of values of a
“variable” in a real or hypothetical population. In this chapter we shall learn to do so, where
we shall further learn how to define concepts like mean, standard deviation, median etc. of
a variable of interest in a population. But before getting into the details we need to first
formally define what we mean by a “variable”, leading to our first definition.

Definition 3.1: A random variable (r.v.) X is a function which maps the elements of
the sample space Ω to the set of real numbers <. 1

Mathematically, X : Ω→ <, and the range of the r.v. X is denoted by X . X is a variable
because its value X(ω) depends on the input ω, which varies over the sample space Ω; and
this value is random because the input ω is random, which is the outcome of a chance
experiment. A few examples will help clarify the point.

Example 3.1: Consider the experiment of tossing a coin three times. For this experiment the
sample space Ω = {HHH,HHT,HTH, THH, TTH, THT,HTT, TTT}. Let X(ω) =No.
of H’s in ω, which in words represents the number of Heads in the three tosses. Thus
X(HHH) = 3, . . ., X(THT ) = 1, . . ., X(TTT ) = 0, and X = {0, 1, 2, 3}. 5

Example 3.2: Consider the experiment of rolling a dice twice. For this experiment the
sample space Ω = {(1, 1), . . . , (1, 6), . . . , . . . , (6, 1), (6, 6)} = {ordered pairs (i, j) : 1 ≤ i ≤
6, 1 ≤ j ≤ 6, i and j integers}. Let X(ω) = X((i, j)) = i + j, which in words represents
the sum of two faces. Thus X((1, 1)) = 2, . . ., X((3, 4)) = 7, . . ., X((6, 6)) = 12, and
X = {2, 3, . . . , 11, 12}. 5

Example 3.3: Consider the experiment of throwing a dirt into a dartboard with radius r. If

1It should be noted that any such function X : Ω → < does not qualify to be called a random variable.
Recall that typically the sample space Ω is considered along with a collection of events A, a σ-field of subsets
of Ω. Now consider the σ-field generated by all finite unions of intervals of the form ∪n

i=1(ai, bi], where
−∞ < a1 < b1 < a2 < b2 · · · < an < bn < ∞, in <. This σ-field is called the Borel σ-field in < and
is denoted by B. Now consider a function X : Ω → <. Such a function is called a random variable if
X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A, ∀B ∈ B. The reason for this is otherwise we may not be able to define
P (X ∈ B) ∀B ∈ B, because as has been mentioned in the previous chapter, P (A) remains undefined for
A ⊆ Ω /∈ A. But as in the previous chapter where we had pretended as if such pathologies do not exist and
proceeded with A = ℘(Ω), the power set of Ω, here also we shall do the same with A = ℘(Ω) and B = ℘(<)
and X as any function from Ω to <, without getting bogged down with rigorous mathematical treatment of
the subject.
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the bull’s eye or the center of the dartboard is taken as the origin (0, 0) then assuming that the
dirt always lands somewhere on the dartboard, the sample space Ω = {(x, y) : x2 +y2 ≤ r2}.
Let X(ω) = X((x, y)) =

√
x2 + y2, which in words represents the distance of the landed dirt

from the bull’s eye. Then for this X, X = [0, r]. 5

Once a r.v. X is defined and its range X , the set of possible values that X can take, is
identified, the immediate next question that arises is that of its probability distribution. By
that it is meant that we would next like to know with what probability or what kind of
frequency is X taking a value x ∈ X . Once we are able to answer that, since by definition
X is real-valued, the next natural questions are then, what is the average or mean value
taken by X, what is the variability or more precisely the standard deviation of the values
taken by X, what is the median of values taken by X, what can we say about the value x0.9

(say) such that 90% of the time X will be ≤ x0.9, etc.. Once these things are appropriately
defined and computed for a r.v. X, they will then give us the notion and numerical values
of these concepts for the population of possible values of a r.v. X.

In statistical applications we have a (real or hypothetical) population of values of some
variable X, like say for example height, weight, age, income etc. of interest, which we would
like to study. For this purpose we shall typically collect a sample and observe these variables
of interest for the individuals (also called sampling units) chosen in the sample, based on
which we would like to extrapolate or infer about different features of the population of X
values. But for doing that, say for example for saying something like, in the population,
median age is 25 years, or standard deviation of heights is 4”, or mean income is Rs.100,000;
we first need to concretely define these concepts themselves in the population before learning
how to use the sample to infer about them, in which we are eventually interested in. Here we
shall learn how to define these notions in the population by studying the totality of values
a variable X can take without referring to a sample of such values. It turns out that the
way one can define these notions for a r.v. X, starting with its probability distribution, that
gives which value occurs how frequently, depends on the nature of X and there are at least
two different cases that needs separate treatment2 - discrete and continuous, which are taken
up in the next two sections.

3.2 Discrete R.V.

Definition 3.2: A random variable X is called discrete if its range X is countable.

A set is called countable if it is either finite or countably infinite. A set X is called
countably infinite if there is a one-to-one and onto function f : P → X , where P is the set
of positive integers {1, 2, . . .}. Like for example, X = {0, 1, 2, . . .}, the set of non-negative
integers, is countably infinite as f(n) = n− 1 is a one-to-one and onto function f : P → X ;
X = {2, 4, . . .}, the set of positive even integers, is countably infinite as f(n) = 2n is a one-

2Of course there are ways to mathematically handle all kinds of random variables in a unified manner,
which we shall learn in due course. But treating two separate cases are conceptually much easier for the
beginners, and thus like most standard text books here also the same approach is adopted.
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to-one and onto function f : P → X ; X = {0,±1,±2, . . .} the set of integers is countably

infinite as f(n) =

{
n/2 if n is even
−(n− 1)/2 if n is odd

is a one-to-one and onto function f : P → X ;

the set of rational numbers Q is countably infinite as Q = ∪∞n=0An, where A0 = {0} and
for n ≥ 1, An = {±m/n : m ∈ P and m and n are relatively prime} are countable sets and
countable union of countable sets is countable.

Thus for a discrete r.v. X, its range may be written as X = {x1, x2, . . .}. For such a r.v.
the most obvious way to define its distribution would be to explicitly specify P [X = xn] = pn
(say) for n ≥ 1, where for computing pn one needs to go back to Ω to see which ω ∈ Ω satisfies
the condition X(ω) = xn, collect all such ω’s into a set A ⊆ Ω and then define pn = P (A).
In this process it is implicit that we are defining the event [X = xn] as {ω ∈ Ω : X(ω) = xn}.
When the probability distribution of a (discrete) r.v. is defined by specifying P [X = x]
for x ∈ X then it is being specified through its probability mass function. In general the
definition of a probability mass function is as follows.

Definition 3.3: A function p : X → [0, 1] with a countable domain X = {x1, x2, . . .} is
called a probability mass function or p.m.f. if
a. pn ≥ 0 ∀n ≥ 1, and

b.
∑
n≥1 pn = 1,

where pn = p(xn).

Specifying the distribution of a (discrete) r.v. X by its p.m.f. means providing a function
p(x), which is a p.m.f. with X as its domain as in Definition 3, with the interpretation
that p(x) = P [X = x]. With this interpretation, p(x) can be defined ∀x ∈ < (not necessarily

only for x ∈ X ) as p(x) =

{
pn if x = xn ∈ X
0 otherwise

. Now let us look at a couple of examples

to examine how the distribution of a (discrete) r.v. may be specified by its p.m.f..

Example 3.1 (Continued): Here the r.v. X can only take values in X = {0, 1, 2, 3} and
thus in order to obtain its p.m.f. we only need to figure out P [X = x] for x = 0, 1, 2, 3.
However for this purpose we first need to know the probabilities of each sample point ω ∈ Ω.
Suppose the coin is biased with P (H) = 0.6, so that P (T ) = 0.4, and the three tosses are
independent. Then the probabilities of the 8 ω’s are as follows:

ω HHH HHT HTH THH

Probability
0.63

= 0.216
0.62 × 0.4
= 0.144

0.62 × 0.4
= 0.144

0.62 × 0.4
= 0.144

ω TTH THT HTT TTT

Probability
0.6× 0.42

= 0.096
0.6× 0.42

= 0.096
0.6× 0.42

= 0.096
0.43

= 0.064

Now after collecting the ω’s corresponding to the four events [X = x] for x = 0, 1, 2, 3 we get

P [X = 0] P [X = 1] P [X = 2] P [X = 3]
= P ({TTT}) = P ({HTT, THT, TTH}) = P ({HHT,HTH, THH} = P ({HHH}
= 0.064 = 3× 0.096 = 3× 0.144 = 0.216

= 0.288 = 0.432
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This gives the p.m.f. of X, which may be graphically represented as follows: 5
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Example 3.2 (Continued): Here X = {2, 3, . . . , 11, 12} and the probability of each of the
11 events [X = x] for x = 2, 3, . . . , 11, 12 are found by looking at the value X takes for each
of the 36 fundamental outcomes as in the following table:

X = i+ j
j ↓ i→ 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Now if the dice is fair, then each of the 36 fundamental outcomes is equally likely with a
probability of 1/36 each, so that by collecting or counting the number of these fundamental
outcomes that lead to the event [X = x] for x = 2, 3, . . . , 11, 12 we obtain the p.m.f. of X
as x 2 3 4 5 6 7 8 9 10 11 12

p(x)× 36 1 2 3 4 5 6 5 4 3 2 1

which may be graphically depicted as follows: 5
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Example 3.4: Consider the experiment of keeping on tossing a coin till a Head appears. For
this experiment, Ω = {H,TH, TTH, TTTH, . . .}. Define the random variable X(ω) =No. of
T ’s in ω, which in words gives, the number of Tails till the first Head appears, or X+1 gives
the number of tosses required to get the first Head in an experiment where a coin is tossed till
a Head appears. Clearly X = {0, 1, 2, . . .} which is not finite but countably infinite. Thus this
r.v. is discrete. Now in order to obtain the p.m.f. of X, suppose the tosses are independent
and let P (H) = p for some 0 < p < 1 so that P (T ) = 1−p = q (say). Then for x = 0, 1, 2, . . .,
p(x) = P [X = x] = P [TT · · ·T︸ ︷︷ ︸

x−many
H] = qxp gives the p.m.f. of X. Note that p(x) is a legitimate

p.m.f. because qxp > 0 ∀x = 0, 1, 2, . . . and
∑∞
x=0 q

xp = p[1 + q+ q2 + q3 + · · ·] = p
1−q = 1. 5

One of the main reasons for obtaining the probability distribution of a r.v. is to be able
to compute P [X ∈ A] for an arbitrary A ⊆ X . While this is conceptually straight-forward
to do so using the p.m.f. p(x) of a (discrete) r.v. with the help of the formula P [X ∈
A] =

∑
x∈A p(x), the validity of which easily follows from countable additivity of P (·), in

practice, evaluating the summation may be a tedious task. For example, in Example 1, the
probability of the event, “at most one head”, may be expressed as X ≤ 1, the probability
of which is obtained as P [X ≤ 1] = P [X = 0] + P [X = 1] = 0.064 + 0.288 = 0.352; in
Example 2, the probability of the event, “sum not exceeding 9 and not less than 3”, may
be expressed as 3 ≤ X ≤ 9, the probability of which is obtained as P [3 ≤ X ≤ 9] = P [X =
3] + P [X = 4] + · · ·+ P [X = 9] = (2 + 3 + 4 + 5 + 6 + 5 + 4)/36 =29/36; and in Example
4, the probability of the event, “at least 10 tosses are required to get the first Head”, may
be expressed as X ≥ 9, the probability of which is obtained as P [X ≥ 9] = 1 − P [X ≤
8] = 1− p[1 + q + q2 + · · · + q8] = 1− p1−q9

1−q = q9. A tool which facilitates such probability
computation is called cumulative distribution function, which is defined as follows.

Definition 3.4: For a r.v. X its cumulative distribution function or c.d.f. is given by
F (x) = P [X ≤ x] for −∞ < x <∞.

First note that (unlike p.m.f.) the definition does not require X to be discrete. The notion
of c.d.f. is well-defined for any r.v. X. 3 Next note that for a discrete r.v., computation
of its c.d.f. amounts to calculation of all the partial sums in one go which are set aside in
its c.d.f., which can then be invoked for easy probability calculations. Finally note that for
a discrete r.v. X, its c.d.f. is an alternative to p.m.f. way of specifying its the probability
distribution. Both convey the same information about the probability distribution but each
one has its own use in exploring different features of the distribution. As the notion of
c.d.f. is common across the board for all r.v., a general discussion on c.d.f. of an arbitrary
random variable is provided in Appendix A, which the reader should read after learning the
concepts associated with a continuous random variable in §3. We begin by working with a
few examples involving the notion of c.d.f. of discrete random variables.

Example 3.1 (Continued): With the p.m.f. of X already figured out let us now compute
its c.d.f. F (x). For this we need to look at all possible ranges of values of X. First
consider −∞ < x < 0. Since X ≥ 0, clearly for −∞ < x < 0, F (x) = P [X ≤ x] =

3As mentioned in footnote 2, c.d.f. is the vehicle through which all r.v.’s can be studied in a unified
manner.
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0. Next for 0 ≤ x < 1, F (x) = P [X ≤ x] = P [X = 0] = 0.064; for 1 ≤ x < 2,
F (x) = P [X ≤ x] = P [X = 0] + P [X = 1] = 0.064 + 0.288 = 0.352; for 2 ≤ x < 3,
F (x) = P [X ≤ x] = P [X ≤ 1] + P [X = 2] = 0.352 + 0.432 = 0.784; and finally for
3 ≤ x < ∞, F (x) = P [X ≤ x] = P [X ≤ 2] + P [X = 3] = 0.784 + 0.216 = 1. In summary
F (x) can be written as follows:

F (x) =



0 if −∞ < x < 0
0.064 if 0 ≤ x < 1
0.352 if 1 ≤ x < 2
0.784 if 2 ≤ x < 3
1 if 3 ≤ x <∞

whose graph when plotted against x looks as follows: 5
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A couple of general remarks regarding the nature of the c.d.f. of a discrete r.v. are in order,
which Figure 1 above will facilitate understand. In general the c.d.f. of a discrete r.v. looks
as it is plotted in Figure 1 for Example 1. It is a discontinuous step function, with jumps
at the points where it has a positive probability mass with the quantum of jump same as
this probability mass and flat in between. As mentioned before, the general properties of
an arbitrary c.d.f. have been systematically assorted in Appendix A, however it helps one
intuitively understand two of the properties of the c.d.f. by studying it in this discrete case.
The first one is that if there is a positive probability mass at a given point then the c.d.f.
gets a jump with the amount of jump same as the probability mass and is discontinuous
at that point, and vice-versa. The second point is that the r.v. has probability 0 of taking
values in an open interval where the c.d.f. is flat, and vice-versa. Now let’s see one of the
major uses of the c.d.f. namely in probability computation.

Example 3.2 (Continued): Proceeding as in the previous example the c.d.f. of X in this
example is given in the following table:

x −∞ < x < 2 2 ≤ x < 3 3 ≤ x < 4 4 ≤ x < 5 5 ≤ x < 6 6 ≤ x < 7
F (x) 0/36 1/36 3/36 6/36 10/36 15/36

x 7 ≤ x < 8 8 ≤ x < 9 9 ≤ x < 10 10 ≤ x < 11 11 ≤ x < 12 12 ≤ x <∞
F (x) 21/36 26/36 30/36 33/36 35/36 36/36
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Now for computing the probability of the event of interest [3 ≤ X ≤ 9] one need not
add 7 terms as before, where we had calculated this probability directly using the p.m.f..
P [3 ≤ X ≤ 9] = P [X ≤ 9] − P [X < 3] (this is because, if A ⊆ B, B = A ∪ (B − A) and
A∩(A−B) = φ, and thus P (B) = P (A)+P (B−A)⇒ P (B−A) = P (B)−P (A); here take
A = [X < 3] and B = [X ≤ 9]) = P [X ≤ 9]−P [X ≤ 2] = F (9)−F (2) = (30−1)/36 = 29/36.
5

Example 3.5: The c.d.f. of X denoting the number of cars sold by a sales-person on a given
day is as follows:

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C.d.f. of X of Example 3.5

x

c.
d.

f.

(

● (

● (

●

0.2

0.7

The probability that the sales-person will be able to sell at lest one car on any given day
is given by P [X > 0] = 1 − P [X ≤ 0] = 1 − F (0) = 1 − 0.2 = 0.8. In general, since the
probability mass at a given point equals the amount of jump in the c.d.f. at that point, it is

easy to see that the X in this example has p.m.f.
x 0 1 2
p(x) 0.2 0.5 0.3

. 5

As can be seen from the above examples, the probability distribution of a discrete r.v.
may be specified by either the p.m.f. or the c.d.f. and one can construct one of these given
the other and thus both of them convey the same information. However for probability
calculations it is typically easier to use the c.d.f. than the p.m.f.. On the other hand the
graph of the p.m.f. typically gives a better intuitive feel about the probability distribution,
like where most of the mass is concentrated, symmetry, number of modes etc., than the c.d.f..
Thus for a given distribution it is better to have both of them handy and use the one which
is appropriate for a given task.

After having an understanding of a discrete probability distribution, we next turn our
attention towards summary measures of such distributions. This scheme is analogous to the
chapter on Descriptive Statistics, where after discussing frequency distributions, histograms
and ogives, one next turns one’s attention towards defining descriptive summary measures
like mean, median. mode, standard deviation, skewness, kurtosis etc. that can be computed
from the data. Here also we shall do exactly the same. However the key difference here is that
we are defining these quantities for a population of values characterized by a r.v. as opposed
to similar notions developed for a sample of observed values in the chapter on Descriptive
Statistics. There are two classes of summary measures of a probability distribution that we
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are interested in - moments and quantiles. Just like the distribution of a discrete r.v. may be
characterized using either its p.m.f. or c.d.f., the summary measures attempting to capture
general things like central tendency, dispersion or skewness can also be expressed using some
functions of either the moments or the quantiles, and interestingly typically one requires the
p.m.f. for the computation of the moments and c.d.f. for the quantiles.

3.2.1 Moments

Definition 3.5: For a positive integer k, the k-th raw moment of a discrete r.v. X
with p.m.f. p(x) is given by

∑
x∈X x

kp(x) which is denoted by E[Xk], and the k-th central
moment is given by

∑
x∈X (x−µ)kp(x) which is denoted by E[(X−µ)k], where µ = E[X] =∑

x∈X xp(x), the first raw moment, is called the Expectation or Mean of X.

The intuitive understanding behind the above definition starts with the definition of Expec-

tation or Mean µ. For this consider a r.v. X with the p.m.f.
x 1 2 3 4
p(x) 0.2 0.3 0.4 0.1

.

According to Definition 3.5 its mean is given by µ = 1×0.2+2×0.3+3×0.4+4×0.1 = 2.4.
Now let’s see the rationale behind calling this quantity the “mean”, when we already have
a general understanding of the notion of mean. For this first recall that random variables
are used for modeling a population of values, or the distribution of values in a population is
expressed in terms of the probability distribution of an underlying random variable. Thus
in this example we are attempting to depict a population where the only possible values are
1, 2, 3 and 4 with their respective relative frequencies being 20%, 30%, 40% and 10%, and
µ is nothing but the mean of this population. If this population is finite having N elements,
then it has 0.2N 1’s, 0.3N 2’s, 0.4N 3’s and 0.1N 4’s and thus naturally the mean value in
this population should equal (1× 0.2N + 2× 0.3N + 3× 0.4N + 4× 0.1N)/N = 2.4. From
this calculation it is immediate that the mean does not depend on the population size N
and only depends on the relative frequency p(x) of the value x in the population, and thus
simply extending the “usual” definition of mean yields the formula µ =

∑
x∈X xp(x). Before

proceeding further it is illustrative to note a few properties of the expectation E[X] of a r.v.
X, which are as follows4 (here c denotes a constant):

Property 1: E[c] = c
Property 2: E[c+X] = c+ E[X]
Property 3: E[cX] = cE[X]

Once we accept that E[X] =
∑
x∈X xp(x), it is then natural to define E[Xk] as

∑
x∈X x

kp(x)
and E[(X − µ)k] as

∑
x∈X (x − µ)kp(x). However a little bit of caution must be exercised

before taking these formulæ to be granted. This is because Xk or (X − µ)k are random
variables in their own right and we have already defined the mean of a discrete r.v. as the
sum of the product of the possible values it can take and their respective probabilities. Thus
if Y = Xk or Y = (X − µ)k, in order to find their mean one must figure out Y , the set of

4A more comprehensive list of these properties along with other moments, not just the expectation,
has been assorted in Appendix B for quick reference. The reason for this is, such a comprehensive list of
properties of even just the expectation requires concepts that are yet to be introduced.
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possible values Y can take, and its p.m.f. p(y). Then its mean will be given by
∑
y∈Y yp(y).

But it turns out that this coincides with
∑
x∈X x

kp(x) and
∑
x∈X (x−µ)kp(x) in the respective

cases justifying the definitions of E[Xk] and E[(X − µ)k] as given in Definition 5. Since
it is so natural to define E[g(X)] by

∑
x∈X g(x)p(x) for any function g(·), but it requires a

proof starting with the definition of E[X] =
∑
x∈X xp(x), E[g(X)] =

∑
x∈X g(x)p(x) is also

called the Law of Unconscious Statistician.

In practice, other than the first raw moment E[X] or mean µ, the other moment that is
extensively used is the second central moment5 E[(X−µ)2]. This quantity is called Variance

of the r.v. X and is denoted by V [X] or σ2.
√
V [X] or σ is called the Standard Deviation

of X. The intuitive idea behind calling it the variance, which is a measure of dispersion or
measures how spread apart the values of the r.v. X are, is as follows. In order to measure
dispersion one first needs a measure of location of the values as a reference point. Mean µ
serves this purpose. Next one measures how far apart the values of X are from this reference
point by considering the deviation (X−µ). Some of these are positive and some of these are
negative and by virtue of the mean, they actually exactly cancel each other while averaging
them out as has been noted in footnote 4. Thus in order to measure dispersion one needs to
get rid of the sign of the deviation (X−µ). Simply ignoring the sign mathematically amounts
to consideration of the absolute value |X − µ|, which is a non-smooth function leading to
mathematical difficulties later on. A smooth operation which gets rid of the sign without
distorting the values too much is squaring6. This leads to the squared deviation (X − µ)2,
whose average value is the variance. Since one changes the unit by squaring (length becomes
area for example) the measure of dispersion expressed in the original unit of measurement
is given by the standard deviation σ.

According to Definition 3.5, V [X] = σ2 =
∑
x∈X (x − µ)2p(x). However there is a

computationally easier formula for V [X], which is as follows.

V [X]

=
∑
x∈X

(x− µ)2p(x)

=
∑
x∈X

(x2 − 2µx+ µ2)p(x)

=
∑
x∈X

x2p(x)− 2µ
∑
x∈X

xp(x) + µ2

= E[X2]− 2µ× µ+ µ2

= E[X2]− µ2 (1)

Formula (1) also gives the relationship between the second raw moment and the second
central moment. Using binomial theorem it is easy to see that any k-th central moment can
be expressed in terms of raw moments of k-th and lesser orders as in formula (1). Before
illustrating numerical computation of means and variances, it is possibly better to first get

5Note that by Property 2 the first central moment E[(X − µ)] equals 0.
6This is the standard way of getting rid of the sign in Statistics and we shall see that this technique of

squaring for removing the sign is used extensively in the later part of the course.
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the motivation for computation of these two quantities. This motivation comes from the
following result.

Chebyshev’s Inequality: For any r.v. X with mean µ and variance σ2 and a constant c,
P (|X − µ| < cσ) ≥ 1− 1

c2
.

Proof:

σ2

=
∑
x∈X

(x− µ)2p(x)

≥
∑

x: x∈X & |x−µ|≥cσ
(x− µ)2p(x) (as we are adding positive quantities and the set

{x : x ∈ X & |x− µ| ≥ cσ} has at most the same elements as X )

≥ c2σ2
∑

x: x∈X & |x−µ|≥cσ
p(x) (as for each x ∈ {x : x ∈ X & |x− µ| ≥ cσ}, (x− µ)2 ≥ c2σ2)

= c2σ2P (|X − µ| ≥ cσ)

Above inequality implies that P (|X − µ| ≥ cσ) ≤ 1
c2

which in turn yields the result by
complementation law. 5

Chebyshev’s Inequality states that if one knows the mean and variance of a random variable,
then one can get an approximate idea about its probability distribution. Knowledge of the
distribution requires knowledge of a function of some sort (like say for example a p.m.f. or
a c.d.f.) which requires a lot more information storage than just two numbers like µ and σ.
But once equipped with these two quantities, one can readily approximate the probability
distribution of any r.v. using Chebyshev’s Inequality. This gives us the motivation for
summarizing the distribution of any r.v. by computing these two widely used moments.
Now let us turn our attention to computation of these two moments.

Example 3.1 (Continued): Given
x 0 1 2 3
p(x) 0.064 0.288 0.432 0.216

as the p.m.f. of

X, its mean µ = 0× 0.064 + 1× 0.288 + 2× 0.432 + 3× 0.216 = 1.8. In order to compute the
variance we shall use the short-cut formula (1), which requires E[X2] along with µ, which
has just been found to be 1.8. E[X2] = 02 × 0.064 + 12 × 0.288 + 22 × 0.432 + 32 × 0.216 =
3.96, and thus σ2 = 3.96 − 1.82 = 0.72, and σ =

√
0.72 ≈ 0.8485. As an illustration

of Chebyshev’s inequality with c = 1.5, it may be stated that the probability that X lies
between 1.8± 1.5× 0.8485 = 1.8± 1.2725 ≈ (0.53, 3.07) is at least 1− 1

1.52 ≈ 0.56, while the
actual value of this probability is 1-0.064=0.936. 5

Example 3.4 (Continued): Here the p.m.f. of X is given by p(x) = qxp for x = 0, 1, 2, . . .
and thus in order to compute its mean and variance we need to find the sum of a couple of
infinite series. First let us compute its mean µ which is same as

E[X]

=
∞∑
x=0

xqxp

= 0× p+ 1× qp+ 2× q2p+ 3× q3p+ 4× q4p+ · · ·

10



= p
[
q + 2q2 + 3q3 + 4q4 + · · ·

]

=

p[ q
+q2 +q2

+q3 +q3 +q3

+q4 +q4 +q4 +q4

...
...

...
... ]

= p

[
q

1− q
+

q2

1− q
+

q3

1− q
+

q4

1− q
+ · · ·

]

=
p

1− q
q

1− q
=

q

p

For computation of the variance, according to (1) we first need to find the sum of the infinite
series

∑∞
x=0 x

2qxp, which is E[X2]. Here we shall employ a different technique for evaluating
this sum. First note that

∑∞
x=0 q

x = 1
1−q . Thus

∂
∂q

∑∞
x=0 q

x ∂
∂q

∑∞
x=0 xq

x−1

=
∑∞
x=0

∂
∂q
qx =

∑∞
x=0

∂
∂q
xqx−1

=
∑∞
x=0 xq

x−1 and =
∑∞
x=0 x(x− 1)qx−2

= ∂
∂q

1
1−q = ∂

∂q
1

(1−q)2

= 1
(1−q)2 = 2

(1−q)3

.

Therefore

∞∑
x=0

x2qx =
2q2

(1− q)3
+
∞∑
x=0

xqx =
2q2

(1− q)3
+

q

(1− q)2
=

q + q2

(1− q)3
⇒ E[X2] =

q + q2

(1− q)2

and thus

V [X] = E[X2]− (E[X])2 =
q + q2

(1− q)2
− q2

(1− q)2
=

q

p2 5

Mean and variance/standard deviation respectively are the standard moment based mea-
sures of location and spread. There are a couple more summary measures which are also
typically reported for a distribution. These are measures of skewness and kurtosis. Like the
measures of location and spread, these measures are also not unique. However they have
fairly standard moment based measures.

Skewness measures the symmetry of a distribution. For this it is very natural to consider the
third central moment, usually denoted by α3, of the distribution. That is α3 = E[(X−µ)3] =∑
x∈X (x−µ)3p(x), where µ denotes the mean of the distribution. Note that if a distribution

is symmetric then its α3 = 0. For a distribution with a heavier right tail α3 > 0 and
likewise α3 < 0 for a distribution with a long left tail. Thus the nature of the skewness of
a distribution is readily revealed by the sign of α3. However the exact numerical value of
α3 is also affected by the spread of a distribution, and thus a direct comparison of the α3

values between two distributions does not provide any indication of whether one distribution
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is more skewed than the other. Furthermore it is desirable to have the measure of skewness
of a distribution as a pure number free of any units so that it remains unaffected by the
scale of measurement. These considerations lead one to define the moment based measure
of skewness as

β1 =
α3

σ3

where σ is the standard deviation of the distribution. β1 is called the Coefficient of
Skewness.

Kurtosis measures the peakedness of a distribution. By peakedness one means how sharp or
flat is the p.m.f.. Again here for this it is natural to consider E[(X−µ)k] for some even power
k. Since for k = 2, E[(X−µ)k] already measures the spread or variance of the distribution, we
use the next even k i.e. k = 4 for the kurtosis. Thus let α4 = E[(X−µ)4] =

∑
x∈X (x−µ)4p(x).

Just as in the case of skewness, here again α4 by itself gets affected by the variability and is
not unit free. This problem is circumvented by defining the Coefficient of Kurtosis as

β2 =
α4

σ4

where σ is the standard deviation of the distribution. Now peakedness is not really an abso-
lute concept like symmetry. By that we mean that just having the value of β2 is not enough
unless it can be compared with something which is a “standard” measure of peakedness.
For this purpose one uses the most widely used (continuous) probability model called the
Normal or Gaussian distribution whose density function looks like the ubiquitous so-called
“bell curve”. The Normal distribution or the bell-curve has a β2 of 3, which serves the pur-
pose of being used as the required bench-mark. Thus distributions with, β2 = 3 are called
mesokurtic meaning their p.m.f. has a peakedness comparable to the bell-curve; β2 > 3
are called leptokurtic meaning their p.m.f. has a peakedness sharper than the bell-curve;
and β2 < 3 are called platokurtic meaning their p.m.f. has a peakedness flatter than the
bell-curve.

3.2.2 Quantiles

A second class of summary measures of a distribution is expressed in terms of the quantiles.

Definition 3.6: For 0 < p < 1, ξp is called the p-th quantile of a r.v. X if

a. F (ξp) ≥ p, and

b. F (ξp−) ≤ p

where F (·) is the c.d.f. of X and F (ξp−) = limx→ξp− F (x) is the left-hand limit of F (·) at
ξp.

p-th quantile of a distribution is nothing but its 100p-th percentile. That is ξp is such a
value that the probability of the r.v. taking a value less than or equal to that is about p
and at least that is about 1 − p. Thus for example the median of a distribution would
be denoted by ξ0.5. However for a discrete r.v. (like say as in Example 1) there may not
exist any value such that the probability of exceeding it is exactly 0.5 and falling below it
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is also 0.5, and thus leaving the notion of median undefined unless defined carefully. The
purpose of Definition 6 is precisely that, so that no matter what p is, it will always yield
an answer for ξp, which is what it should be for the easily discernible cases and the closest to
the conceptual value for the not so easy ones. Thus though Definition 6 might look overly
complex for a simple concept, it is a necessary evil we have to live with, and the only way to
appreciate it would be to work with it through a few examples and then examine whether
the answer it has yielded makes sense.

Example 3.1 (Continued): As pointed out above, it appears that there is no obvious
answer for the median of this r.v.. However from the c.d.f. of X given in page 6 just above
its graph in Figure 1, we find that the number 2 satisfies both the conditions required by
Definition 6 for p = 0.5. Let’s see why. Condition a stipulates that F (ξ0.5) ≥ 0.5 and here
F (2) = 0.784 satisfies this condition, and F (2−) = limx→2− F (x) = 0.352 ≤ 0.5 satisfies
condition b. Thus according to Definition 6, the median of this r.v. is 2. Now let’s
examine why this answer makes sense. Consider a large number of trials of this experiment
where in one trial you toss the coin three times and note down the number of Heads in that
trial. Now after a large number of trials, say N , assumed to be odd, you will have about
0.064N many 0’s, 0.288N many 1’s, 0.432N many 2’s and 0.216N many 3’s. If you put these
numbers in ascending order and then look for the number in the (N + 1)/2-th position you
will get a 2. Thus the answer for the median being 2 makes perfect sense! 5

Example 3.2 (Continued): Suppose we are interested in determining ξ 1
6

or the 16.6̇-th
percentile of X. The c.d.f. of X is given at the bottom of page 6 in a tabular form. From
this table it may be seen that F (x) = 1

6
∀x ∈ [4, 5). Therefore ∀x ∈ (4, 5), F (x) ≥ 1

6
and

F (x−) = F (x) ≤ 1
6
. Thus any real number between 4 and 5 exclusive qualifies to be called

as ξ 1
6

of X. Now F (4) = 1
6

and F (4−) = 1
12
≤ 1

6
, and F (5) = 5

18
≥ 1

6
and F (5−) = 1

6
. Thus

the numbers 4 and 5 also satisfy the conditions of Definition 6 for p = 1
6

and are thus
legitimate values for ξ 1

6
of X. It may also be noted that no other value outside the closed

interval [4, 5] satisfies both the conditions of Definition 6 for p = 1
6
. Hence ξ 1

6
of X is

not unique and any real number between 4 and 5 inclusive may be regarded as the 16.6̇-th
percentile of X, and these are its only possible values. The reason why this answer makes
sense can again be visualized in terms of a large number of trials of this experiment. The
required value will be sometimes 4, sometimes 5 and sometimes in between. 5

Once we have learned how to figure out the quantiles of a distribution next let us turn our
attention to quantile based summary measures of a distribution. We are mainly concerned
with measures of location, spread and skewness, whose moment based measures are given
by the mean, variance/standard deviation and β1 respectively, as has been seen in §2.1.
Analogous to the mean, the standard quantile based measure of location is given by the
Median ξ0.5. ξ0.25, ξ0.5 and ξ0.75 are the three numbers which divide X , the sample space
of the r.v. X, in four equal parts in the sense that P (X ≤ ξ0.25) ≈ 0.25, P (ξ0.25 < X ≤
ξ0.5) ≈ 0.25, P (ξ0.5 < X ≤ ξ0.75) ≈ 0.25 and P (X > ξ0.75) ≈ 0.25. Since they divide X
in (approximately) four equal parts these three quantiles, ξ0.25, ξ0.5 and ξ0.75 are together
called quartiles. Analogous to the standard deviation, the standard quantile based measure
of spread is given by the Inter Quartile Range (IQR) defined as ξ0.75 − ξ0.25. For a
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symmetric distribution ξ0.25 and ξ0.75 are equidistant from ξ0.5. For a positively skewed
distribution the distance between ξ0.75 and ξ0.5 is more than that between ξ0.25 and ξ0.5, and
like wise for a negatively skewed distribution the distance between ξ0.75 and ξ0.5 is less than
that between ξ0.25 and ξ0.5. Thus the difference between the two distances ξ0.75 − ξ0.5 and
ξ0.5 − ξ0.25 appear to be a good indicator of skewness of a distribution. However just as
in the case of moment based measure, this difference ξ0.25 + ξ0.75 − 2ξ0.5 though captures
skewness, remains affected by the spread of the distribution and is sensitive to the scale of
measurements. Thus an appropriate quantile based measure of skewness may be found by
dividing ξ0.25 +ξ0.75−2ξ0.5 by the just described quantile based measure of spread IQR. Thus
a quantile based Coefficient of Skewness is given by ξ0.25+ξ0.75−2ξ0.5

ξ0.75−ξ0.25 .

3.2.3 Examples

We finish our discussion on discrete r.v. after solving a few problems.

Example 3.6: If 6 trainees are randomly assigned to 4 projects find the mean, standard
deviation, median, and IQR of the number of projects with none of the trainees assigned to
it.
Solution: Let X denote the number of projects with none of the trainees assigned to it.
Then X is a discrete r.v. with X = {0, 1, 2, 3}. In order to find its moment and quantile
based measures of location and spread we have to first figure out its p.m.f.
First lest us try to find P [X = 0]. In words, the event [X = 0] means none of the projects

is empty (here for the sake of brevity, the phrase “a project is empty” will be used to mean
no trainee is assigned to it). Thus for i = 1, 2, 3, 4 let Ai denote the event, “i-th project is
empty”. Then [X = 0] = (∪4

i=1Ai)
c

and thus

P [X = 0]

= 1− P
(
∪4
i=1Ai

)
(by the complementation law)

= 1−


4∑
i=1

P (Ai)−
∑
i 6=j

P (Ai ∩ Aj) +
∑
i 6=j 6=k

P (Ai ∩ Aj ∩ Ak) + P (A1 ∩ A2 ∩ A3 ∩ A4)


(by eqn. (2) of “Elementary Probability Theory”)

= 1−
{

4× 36

46
− 6× 26

46
+ 4× 1

46

}
(because, a) the event Ai can happen in 36 ways out

of the possible 46, and there are 4 of them;

b) the event Ai ∩ Aj can happen in 26 ways

and there are

(
4
2

)
= 6 of them;

c) the event Ai ∩ Aj ∩ Ak can happen in only

1 way and there are

(
4
3

)
= 4 of them; and

d) the event A1 ∩ A2 ∩ A3 ∩ A4 is impossible)

= 0.380859
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Next let us figure out P [X = 1]. There are

(
4
1

)
= 4 ways of choosing the project that

will remain empty. Now since X = 1, the remaining 3 must be non-empty. Thus for these
three non-empty projects, for i = 1, 2, 3 let Bi denote the event, “i-th project is empty”.
Then the event, “the remaining three projects are non-empty” is same as (∪3

i=1Bi)
c
, and

thus the number of ways that can happen equals 36 × [1− P (∪3
i=1Bi)], as there are 36 ways

of assigning the 6 trainees to the 3 projects. Now

P
(
∪3
i=1Bi

)
=

3∑
i=1

P (Bi)−
∑
i 6=j

P (Bi ∩Bj) + P (B1 ∩B2 ∩B3) (by eqn. (2) of “Elementary Probability

Theory”)

= 3× 26

36
− 3× 1

36
(because, a) the event Bi can happen in 26 ways out of the possible

36 and there are 3 of them;

b) the event Bi ∩Bj can happen in only 1 way and there

are 3 of them; and

c) the event B1 ∩B2 ∩B3 is impossible)

Thus the total number of ways the event [X = 1] can happen is 4 × (36 − 3× 26 + 3), and

therefore P [X = 1] =
4×(36−3×26+3)

46 = 0.527344.

The event [X = 2] can happen in 6 × (26 − 2) ways. This is because if exactly 2 projects
are empty the remaining 2 must be non-empty and the 4 projects can be divided into two

groups of 2 empty and 2 non-empty in

(
4
2

)
= 6 ways. Now there are 26 ways of assigning

6 trainees to the 2 non-empty projects, but since out of these there are 2 possibilities in
which all the 6 trainees get assigned to the same project, the number of cases where they
are assigned to the 2 projects such that none of the 2 projects is empty is 26 − 2. Therefore

P [X = 2] = 6×(26−2))
46 = 0.090820.

The event [X = 3] can happen in

(
4
1

)
= 4 ways. Choose one project out of 4 in

(
4
1

)
= 4

ways and then all the 6 trainees are assigned to it. Thus P [X = 2] = 4
46 = 0.000977. As a

check note that

P [X = 0] + P [X = 1] + P [X = 2] + P [X = 3]

= 1− 1

46

(
4× 36 − 6× 26 + 4− 4× 36 + 12× 26 − 12− 6× 26 + 12

)
= 0.380859 + 0.527344 + 0.090820 + 0.000977

= 1

Thus the p.m.f. of X is given by
x 0 1 2 3
p(x) 0.380859 0.527344 0.090820 0.000977

and

therefore its mean µ = 0×0.380859+1×0.527344+2×0.090820+3×0.000977 = 0.711915.
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E[X2] = 02× 0.380859 + 12× 0.527344 + 22× 0.090820 + 32× 0.000977 = 0.899417 and thus
its standard deviation σ =

√
0.899417− 0.7119152 =

√
0.392594 = 0.626573.

ξ0.5, the median ofX is 1. This is because this is the only point where F (1) = 0.908203 ≥ 0.5
and F (1−) = 0.380859 ≤ 0.5, where F (·) is the c.d.f. of X. Likewise its first quartile
ξ0.25 = 0, as F (0) = 0.380859 ≥ 0.25 and F (0−) = 0 ≤ 0.25; and the third quartile ξ0.75 = 1,
as F (1) = 0.908203 ≥ 0.75 and F (1−) = 0.380859 ≤ 0.75; and therefore the IQR of X is 1.
5

Example 3.7: Let X denote the number of bugs present in the first version of a software.

It has been postulated that P [X = n] = cp
n+1

n+1
for n = 0, 1, 2, . . . for some 0 < p < 1.

a. Find the normalizing constant c in terms of the parameter p.

b. If for a certain software p = 0.5, what is the probability of it being free from any bug?

c. Find the expected number of bugs in a software having the postulated p.m.f..

Solution (a): The normalizing constant cmust be such that
∑∞
n=0 P [X = n] = c

∑∞
n=0

pn+1

n+1
=

1. This basically amounts to finding the sum of the infinite series
∑∞
n=1

pn

n
. Those of you

who can recall the logarithmic series, should be able to immediately recognize that since for
|x| < 1, log(1−x) = −x

1
− x2

2
− x3

3
−· · ·, ∑∞n=1

pn

n
= − log(1−p) as it is given that 0 < p < 1.

For those (like me) who cannot remember all kinds of weird formulæ here is how the series
can be summed recalling the technique employed earlier in Example 4. For 0 < p < 1

∞∑
n=0

pn =
1

1− p
⇒
∫ { ∞∑

n=0

pn
}
dp =

∞∑
n=0

∫
pndp =

∞∑
n=0

pn+1

n+ 1
=
∫ 1

1− p
dp+k = − log(1−p)+k

for some constant k. For p = 0 since both
∑∞
n=0

pn+1

n+1
and − log(1 − p) equal 0, k = 0.

Therefore
∑∞
n=0

pn+1

n+1
= − log(1 − p) implying c(− log(1 − p)) = 1. Hence c = 1

− log(1−p) =
1

log( 1
1−p)

.

(b): For p = 0.5, c = 1/ log 2 ≈ 1.4427, and we are to find P [X = 0], the answer to which is
1.4427×0.5=0.7213.
(c): Here we are to find E[X], which again basically boils down to summing an infinite series,
which is done as follows.

E[X]

=
∞∑
n=0

nP [X = n]

= c
∞∑
n=0

n
pn+1

n+ 1

= c
∞∑
n=0

{
(n+ 1)

pn+1

n+ 1
− pn+1

n+ 1

}

= c
∞∑
n=0

pn+1 − c
∞∑
n=0

pn+1

n+ 1

=
p

(1− p) log
(

1
1−p

) − 1
5
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Example 3.8: The shop-floor of a factory has no control over humidity. The newly installed
CNC machine however requires a humidity setting either at low, medium or high. The
machine is therefore allowed to use its default program of starting at one of the humidity
settings at random, and thereafter changing the setting every minute, again at random. Let
X denote the number of minutes the machine runs in the medium setting in the first 3
minutes of its operation.Answer the following:
a. Plot the p.m.f. of X.

b. Sketch the c.d.f. of X.

c. Find the mean, standard deviation, median and IQR of X.

Solution (a): Denote Low, Medium and High by L, M and H respectively. Then the possible
configurations for the first three minutes and hence the value of X can be figured out with
the help of the following tree digram:
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M

HJ
J
J
J
J
J
J
J
J
J
J

Start

First
Minute

Second
Minute

Third
Minute

X takes
Value

1

1

0

1

2

1

1

2

1

0

1

1

Thus it can be seen that there are a total of 12 possibilities and each has a probability
of 1

12
. This may be verified as follows. Take any configuration, say MHL. P (MHL) =

P (M in the First Minute)×P (H in the Second Minute | M in the First Minute)×P (L in the
Third Minute | M in the First Minute AND H in the Second Minute) = 1

3
× 1

2
× 1

2
= 1

12
. Now

in order to figure out the p.m.f. of X one simply need to count the number of times it assumes

the values 0, 1, and 2 respectively. These counts yield the p.m.f. of X as
x 0 1 2
p(x) 1

6
2
3

1
6

the plot of which is given in the next page.
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(b): The c.d.f. of X is given by F (x) =


0 if x < 0
1
6

if 0 ≤ x < 1
5
6

if 1 ≤ x < 2
1 if x ≥ 2

, which is plotted below.
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(c): Mean µ = 0×1
6
+1×2

3
+2×1

6
= 1. Standard Deviation σ =

√(
02 × 1

6
+ 12 × 2

3
+ 22 × 1

6

)
− 1

= 1√
3
. Median ξ0.5 = 1 as F (1) = 5

6
≥ 0.5 and F (1−) = 1

6
≤ 0.5. IQR = ξ0.75 − ξ0.25 =

1− 1 = 0. 5

3.3 Continuous R.V.

Definition 3.7: A r.v. X is said to be continuous if its c.d.f. F (x) is continuous ∀x ∈ <.

Note the difference between Definitions 2 and 7. While a discrete r.v. is defined in terms
of its sample space X , a continuous r.v. is not defined as X being uncountable. What it
means is since P [X = x] = P [X ≤ x] − P [X < x] = F (x) − F (x−) (see Property 4 in
Appendix A), and for a continuous F (x), F (x) = F (x−) ∀x ∈ <, P [X = x] = 0 ∀x ∈ < for a
continuous r.v. X. Or in other words alternatively but equivalently, a r.v.X may be defined
to be continuous iff P [X = x] = 0 ∀x ∈ <. Thus the notion of p.m.f. remains undefined for a
continuous r.v. (as

∑
x∈X P [X = x] needs to equal 1 for a p.m.f.). The definition also goes on

to show that a r.v. cannot simultaneously be discrete as well as continuous. This is because
we have already seen that the c.d.f. of a discrete r.v. is necessarily a discontinuous step
function and it is just argued that the notion of p.m.f. remains undefined for a continuous
r.v..
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We begin our discussion on continuous r.v. with a couple of examples, where we handle
them in terms of their c.d.f., as it has already been seen in the discrete case how the c.d.f.
may be used for probability calculations.

Example 3.3 (Continued): Consider the r.v. X denoting the distance from the bull’s
eye of a dirt thrown into a dartboard of radius r, where it is assumed that the dirt always
lands somewhere on the dartboard. Now further assume that the dirt is “equally likely”
to land anywhere on the dartboard. By this it is meant that the probability of the dirt
landing within any region R of the dartboard is proportional to the area of R and does not
depend on the exact location of R on the dartboard. Now with the Ω of this experiment
equipped with this probability, let us figure out the c.d.f. of the r.v. X. Let 0 < x < r.
F (x) = P [X ≤ x] and the event [X ≤ x] can happen if and only if the dirt lands within
the circular region of the board with the bull’s eye in its center and radius x, which has an
area of πx2. Thus F (x) ∝ πx2. The constant of this proportionality is found to be 1

πr2
by

observing that F (r) = 1 and F (r) ∝ πr2. Thus for 0 < x < r F (x) = x2

r2
. Now obviously

F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ r. Thus the complete F (x) may be specified as

F (x) =


0 if x ≤ 0
x2

r2
if 0 < x < r

1 if x ≥ r

and is plotted below for r = 1. Note both analytically from the

expression of F (x) as well as from the graph, F (x) is a continuous function of x ∀x ∈ <. 5
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C.d.f. of X of Example 3.3 for r=1

x

c.d
.f.

Example 3.9: Suppose we want to model the r.v. T denoting the number of hours a light
bulb will last. In order to do so we make the following two postulates:
i. The probability that the light bulb will fail in any small time interval (t, t + h] does not

depend on t and equals λh+ o(h) for some λ > 0, called the failure rate, and o(h) is a

function such that limh→0
o(h)
h

= 0.

ii. If (s, t] and (u, v] are disjoint time intervals then the events of the light bulb failing in
these two intervals are independent.

We shall find the distribution of T by figuring out P [T > t] which is same as 1−F (t), where
F (·) is the c.d.f. of T . Fix a t > 0. Then the event [T > t] says that the light bulb has
not failed till time t. Divide the time interval [0, t] in n equal and disjoint parts of length h
as [0, t] = [0 = t0, t1] ∪ (t1, t2] ∪ · · · ∪ (tn−1, tn = t] such that h = t

n
and for i = 1, 2, . . . , n,

ti − ti−1 = h, as in the following diagram:

0 = t0 t1 t2 t3 · · · · · · · · · · · · · · · tn−1 tn = t

19



Now the event [T > t] is same as the event that the light bulb has not failed in any of the
intervals (ti−1, ti] for i = 1, 2, . . . , n, and this must be true for ∀h > 0. Therefore,

P [T > t]

= lim
n→∞

P [∩ni=1{the light bulb has not failed in the time interval (ti−1, ti]}]
(as n→∞⇔ h→ 0)

= lim
n→∞

n∏
i=1

P [the light bulb has not failed in the time interval (ti−1, ti−1 + h]]

(by the independence assumption of postulate ii)

= lim
n→∞

n∏
i=1

[
1− λ t

n
+ o

(
t

n

)]
(since h =

t

n
and by postulate i, probability of

failing in (ti−1, ti−1 + h] is λh+ o(h), and therefore the probability of not failing is

1− λh+ o(h), the sign of o(h) being irrelevant)

= lim
n→∞

[
1− λ t

n
+ o

(
t

n

)]n
= lim

n→∞
exp

{
n log

[
1− λ t

n
+ o

(
t

n

)]}
= lim

n→∞
exp

{
n

[(
−λ t

n
− λ2 t2

2n2
− λ3 t3

3n3
− · · ·

)
−
(
o
(
t

n

)
t

n
λ+

t

n
o2
(
t

n

)
λ+

t2

n2
o
(
t

n

)
λ2 + · · ·

)
+
(
o
(
t

n

)
+

1

2
o2
(
t

n

)
+

1

3
o3
(
t

n

)
+ · · ·

)]}

(as log(1− x) = −
∞∑
k=1

xk

k
for |x| < 1 and

∣∣∣∣λ tn + o
(
t

n

)∣∣∣∣ < 1 for n sufficiently large)

= lim
n→∞

exp

{
−λt−

(
λ2 t

2

2n
+ λ3 t3

3n2
+ · · ·

)
+ no

(
t

n

)(
1 + λ

t

n
+ λ2 t

2

n2
+ · · ·

)

+ no2
(
t

n

)(
1

2
+ λ

t

n
+ · · ·

)
+ · · ·

}
= e−λt (as for k ≥ 2, lim

n→∞
λk

tk

knk−1
= 0,

and for k ≥ 1 lim
n→∞

nok
(
t

n

)
= lim

n→∞

o(t/n)

t/n

1

t
ok−1

(
t

n

)
= 0 by definition of o(·))

Hence the c.d.f. of T is given by F (t) =

{
0 if t ≤ 0
1− e−λt if t > 0

. Note that F (t) is a continuous

function of t. 5

Though one can compute probabilities and quantiles with the c.d.f., as mentioned earlier,
it does not provide a very helpful graphical feel for the distribution, nor there is any obvious
way to compute the moments with the c.d.f.. This calls for an entity which is analogous
to p.m.f. as in the discrete case. This entity is called probability density function or p.d.f.
defined as follows.

Definition 3.8: A function f(x) : < → < is called a probability density function if

a. it is non-negative i.e. f(x) ≥ 0 ∀x ∈ <, and
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b.
∫∞
−∞ f(x)dx = 1 i.e. the total area under f(x) is 1.

It turns out that p.d.f. need not exist for an arbitrary continuous r.v.. It exists only for
those continuous random variables whose c.d.f. F (x) has a derivative “almost everywhere”.
Such random variables are called r.v. with a density and its p.d.f. is given by f(x) = d

dx
F (x).

Here we shall deal with only those continuous random variables which have a density i.e.
with a differentiable c.d.f.. Thus let us assume that the c.d.f. F (x) is not only continuous
but also has a derivative almost everywhere. Now

f(x) =
d

dx
F (x) = lim

h→0

F (x+ h)− F (x)

h
= lim

h→0

P [X ∈ (x, x± h]]

h
(2)

(x, x±h] is used to denote the interval (x, x+h] for h > 0, and (x+h, x] for h < 0. Equation
(2) gives the primary connection between p.d.f. and probability, from which it may also be
seen why it is called a “density”. According to (2), for small h, P [X ∈ (x, x ± h]] ≈ hf(x)
and thus f(x) gives the probability that X takes a value in a small interval around x per
unit length of the interval. Thus it is giving probability mass per unit length and hence the
name “density”.

Now let us examine how probability of X taking values in an interval of arbitrary length
(not just in a small interval around a given point x) may be obtained using the p.d.f..
Of course for practical applications one would typically use the c.d.f. for such probability
calculations, but then that raises the issue of how can one figure out the c.d.f. if only the
p.d.f. is given. Both of these issues viz. probability calculation using p.d.f.and expressing
the c.d.f. in terms of the p.d.f. are essentially one and the same. Since f(x) is the derivative
of F (x), by the second fundamental theorem of integral calculus, F (x) may be expressed as
integral of f(x) or F (x) =

∫ x
−∞ f(t)dt and thus P [a < X ≤ b] may be found as

∫ b
a f(x)dx,

and thus answering both the questions. However here we shall try to argue these out from
scratch without depending on results from calculus which you might have done some years
ago.

Let f(x) be a p.d.f. as in Figure 3.2 below and we are interested in computing P [a ≤ X ≤ b]
using this p.d.f..

0.
00

0.
05

0.
10

0.
15

Figure 2: Probability Calculation Using p.d.f.

f(x
)

x0=a b=xnxi−1 xi

≈ f(xi)h

}

h
First divide the interval [a, b] into n equal parts as [a, b] = [a = x0, x1] ∪ [x1, x2] ∪ · · · ∪
[xn−1, xn = b] such that h = b−a

n
and for i = 1, 2, . . . , n, xi − xi−1 = h as in Figure 2 above.

For n sufficiently large, or equivalently for h sufficiently small, by (2), P [xi−1 ≤ X ≤ xi] may
be approximated by f(xi)h, as has been indicated with the shaded region in Figure 2. Thus
an approximate value of P [a ≤ X ≤ b] may be found by adding these for i = 1, 2, . . . , n as∑n
i=1 f(xi)h. However this is an approximation because of the discretization, and the exact

21



value can be obtained by simply considering the limit of
∑n
i=1 f(xi)h by letting h → 0 or

equivalently n→∞. Thus

P [a ≤ X ≤ b] = lim
n→∞

n∑
i=1

f(xi)
b− a
n

=
∫ b

a
f(x)dx (3)

The last equality follows from the definition of definite integral. Thus we see that probabil-
ities of intervals are calculated by integrating the density function, which is same as finding
the area under the p.d.f. over this interval. Now one should be able to see the reason for
the conditions a and b of Definition 8. Non-negativity is required because probability is,
and the total area under the p.d.f. is required to be 1 because P (Ω) = 1. The intuitive
reason behind this “area” business is as follows. Since f(x) is a probability density (per
unit length), in order to find the probability, one has to multiply it by the length of the
interval leading to the notion of the area. This is also geometrically seen in Figure 2, where
P [xi−1 ≤ X ≤ xi] is approximated by the area of a rectangle with height f(xi) and width
h. Finally letting a→ −∞ and substituting x for b and changing the symbol of the dummy
variable of integration in (3) we get

F (x) =
∫ x

−∞
f(t)dt (4)

which gives the sought expression for c.d.f. in terms of the p.d.f. while the converse is given
in (2). Before presenting some more examples pertaining to continuous random variables,
we shall first settle the issue of computation of the moments and the quantiles.

Definition 3.9: For a positive integer k, the k-th raw moment of a r.v. X with p.d.f. f(x)
is given by

∫∞
−∞ x

kf(x)dx which is denoted by E[Xk], and the k-th central moment is given
by

∫∞
−∞(x − µ)kf(x)dx which is denoted by E[(X − µ)k], where µ = E[X] =

∫∞
−∞ xf(x)dx,

the first raw moment, is called the Expectation or Mean of X.

This definition may be understood if one understands why
∫∞
−∞ xf(x)dx is called the mean

of a r.v. X with p.d.f. f(x), as the rest of the definition follows from this via the law of
unconscious statistician, as has been discussed in detail in §2.1. In order to find E[X], just
as in case of finding probabilities of intervals using the p.d.f., we shall first discretize the
problem, then use Definition 5 for expectation, and then pass on to the limit to find the
exact expression. Thus first consider a r.v. X which takes values in a bounded interval [a, b].
Divide the interval [a, b] into n equal parts as [a, b] = [a = x0, x1]∪[x1, x2]∪· · ·∪[xn−1, xn = b]
such that h = b−a

n
and for i = 1, 2, . . . , n, xi−xi−1 = h. For n sufficiently large, or equivalently

for h sufficiently small, by (2), P [xi−1 ≤ X ≤ xi] may be approximated by f(xi)h. Thus by
Definition 5, an approximate value of E[X] may be found by adding these for i = 1, 2, . . . , n
as
∑n
i=1 xif(xi)h. However this is an approximation because of the discretization, and the

exact value can be obtained by simply considering the limit of
∑n
i=1 xif(xi)h by letting

h → 0 or equivalently n → ∞. Thus E[X] = limn→∞
∑n
i=1 xif(xi)

b−a
n

=
∫ b
a xf(x)dx. Now

for an arbitrary r.v. X taking values in < = (∞,∞), E[X] is found by further considering
lim

a→ −∞
b→∞

∫ b
a xf(x)dx =

∫∞
−∞ xf(x)dx, and thus E[X] =

∫∞
−∞ xf(x)dx.

Just as in the discrete case, mean µ = E[X], variance σ2 = E [(X − µ)2] = E [X2]−µ2, co-
efficient of skewness β1 = E [(X − µ)3] /σ3 and coefficient of kurtosis β2 = E [(X − µ)4] /σ4.
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Chebyshev’s inequality, relating the probability distribution to the first two moments - mean
and variance, also remains valid in this case. Its proof is identical to the one given in the
discrete case with just the summations replaced by integrals. Actually this last remark is
true in a quite general sense i.e. typically any result involving p.m.f. has a continuous
analogue involving p.d.f. which is proved in the same manner as the p.m.f. case with the
summations replaced by integrals.

Though moments required a separate definition in the continuous case, the definition of
quantile in general was given in Definition 6 which is still valid in this continuous case.
However the definition takes a slightly simpler form for the continuous case. a of Definition
6 requires ξp, the p-th quantile to satisfy the inequality F (ξp) ≥ p, while b requires F (ξp−) ≤
p. But for a continuous X since its c.d.f. F (·) is continuous, F (ξp) = F (ξp−) and thus a
and b together imply that the p-th quantile ξp is such that F (ξp) = p, or ξp is the solution
(or the set of solutions, as the case may be) of the equation F (ξp) = p. Now let us work out
a few examples involving continuous r.v..

Example 3.10: The length (in inches) of the classified advertisements in a Saturday paper

has the following p.d.f. f(x) ∝
{

(x− 1)2(2− x) if 1 ≤ x ≤ 2
0 otherwise

. Answer the following:

a. Find the proportionality constant and then graph the p.d.f..

b. What is the probability that a classified advertisement is more than 1.5 inches long?

c. What is the average length of a classified advertisement?

d. What is the modal length of a classified advertisement?

e. What is the median length of a classified advertisement?

f. What is the sign of its coefficient of skewness β1 ?

Solution (a): Let the constant of proportionality be c such that

f(x) =

{
c(x− 1)2(2− x) if 1 ≤ x ≤ 2
0 otherwise

.

Now c is determined from b of Definition 8 requiring
∫∞
−∞ f(x) = 1. Note that f(x) ≥ 0

∀x ∈ <. ∫ 2

1
(x− 1)2(2− x)dx

=
∫ 2

1
(−x3 + 4x2 − 5x+ 2)dx

= −1

4
x4

∣∣∣∣x=2

x=1
+

4

3
x3

∣∣∣∣x=2

x=1
− 5

2
x2

∣∣∣∣x=2

x=1
+ 2x|x=2

x=1

= −15

4
+

28

3
− 15

2
+ 2

=
−45 + 112− 90 + 24

12

=
1

12

Therefore c must equal 12. The graph of f(x) is plotted below.
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P.d.f. of Example 3.10

x

f(x
)

(b): P [X > 1.5]

= 1− P [X ≤ 1.5]

= 1− 12
∫ 1.5

1
(x− 1)2(2− x)dx

= 1−
{
−3x4

∣∣∣x=1.5

x=1
+ 16x3

∣∣∣x=1.5

x=1
− 30x2

∣∣∣x=1.5

x=1
+ 24x|x=1.5

x=1

}
= 1− (−12.1875 + 38− 37.5 + 12)

= 1− 0.3125

= 0.6875

(c): E[X]

= 12
∫ 2

1
(−x4 + 4x3 − 5x2 + 2x)dx

= −12

5
x5

∣∣∣∣x=2

x=1
+ 12x4

∣∣∣x=2

x=1
− 20x3

∣∣∣x=2

x=1
+ 12x2

∣∣∣x=2

x=1

= −372

5
+ 180− 140 + 36

= 1.6

(d): Mode of a continuous r.v. is that value around which intervals of same length has
maximum probability compared to the other values. This is obviously that point where the
density is maximum or the maxima of the p.d.f.. Note that maxima of f(x) is same as the
maxima of log f(x), which is found as follows.

d

dx
log f(x)

=
d

dx
2 log(x− 1) + log(2− x)

=
2

x− 1
− 1

2− x
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and thus
d

dx
log f(x) = 0⇒ 4− 2x− x+ 1 = 0⇒ x = 1

2

3
.

Now note that
d2

dx2
log f(x) = − 2

(x− 1)2
− 1

(2− x)2
< 0 at x = 1

2

3
.

Therefore 12
3

is the maxima of log f(x) and thus the modal length is 12
3

inches.

(e): Any quantile computation requires the c.d.f. F (x) which for 1 ≤ x ≤ 2 is given by

F (x) = 12
∫ x

1
(t− 1)2(2− t)dt = −3x4 + 16x3 − 30x2 + 24x− 7

which is plotted below, which also depicts the solution of the equation F (ξ0.5) = 0.5 through
the dotted lines.
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Unfortunately the solution of the equation F (ξ0.5) = 0.5 requires numerical methods which
after applying the method of regula falsi yields ξ0.5 = 1.614273, which is correct up to 6
decimal places.

(f): From the graph of the p.d.f., it is fairly clear that it is slightly negatively skewed, which
is also supported by the findings in c, d and e above, that shows that mean < median <
mode which is a typical characteristic of negatively skewed distributions. Thus even without
the horrendous computation of E[(X −µ)3] it may be fairly confidently stated that the sign
of β1, the coefficient of skewness, would be negative. 5

Example 3.11: Company X assembles and sells PC’s without any warranty for Rs.30,000
at a profit of Rs.5,000. But from the market pressure of competitors, X is now forced to
sell an optional 1 year warranty, say W, for their PC’s. The probability that a customer
will buy W, say pw, is unknown to X. From the past service and repair records however,
X estimates that the chance of a system failure within a year of purchase is 0.01, and the
cost of subsequent repairs has a continuous symmetric distribution with mean Rs.2000 and
standard deviation Rs.500. It also seems reasonable to assume that the event of a system
failure and the amount spent on repairs thereafter, is independent of a customer buying W.
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Keeping the price of the PC’s bought without W as before, for deciding upon the value of
w, the price of W, the only criterion X has set forth is that, the probability of making at
least Rs.5,000 profit from a sale of a PC must be at least 0.9999. Answer the following:

a. Express the probability distribution of the Profit, in thousands of Rs..

b. What is the maximum value pw can have for which, the profit-goal is realized irrespective
of the values of w?

c. What should be the minimum value of w, guarding against the worst possible scenario?

d. Give a strategy to bring down the value of w obtained in c above in the future, without
any engineering improvement or compromise on the criterion of profit-goal.

Solution (a): Let P denote the profit and R denote the repair cost, both in thousands
of Rs.. Now there are three possibilities that might arise in which cases the profits are
potentially different. First a customer may not buy the warranty, which has a probability
of 1 − pw, in which case the profit P = 5. The second case is where the customer buys
the warranty and the PC does not fail within a year. In this case the profit P = 5 + w,
because w amount (in thousands of Rs.) was paid by the customer for buying W over and
above its price of Rs.30,000 that has a profit of Rs.5,000 included in it, but the company did
not have to incur any repair cost as the PC did not fail within the warranty period. This
case has a probability of 0.99pw as it is assumed that the events of failure within a year
and buying the warranty are independent with respective probabilities 0.01 and pw. The
third scenario is where the customer buys W, the PC fails within a year and as a result of
which the company had to face a repair cost of R. In this case the profit P = 5 + w − R,
and its probability is 0.01pw. Thus the probability distribution of P may be summarized as

P =


5 with probability 1− pw
5 + w with probability 0.99pw
5 + w −R with probability 0.01pw

. Note that P is neither pure discrete nor pure

continuous as it has both the components.

(b): The profit-goal is P [P ≥ 5] ≥ 0.9999. But

P [P ≥ 5] ≥ 0.9999

⇔ (1− pw) + 0.99pw + 0.01pwP [R ≤ w] ≥ 0.9999

⇔ 1− 0.01pwP [R > w] ≥ 0.9999

⇔ P [R > w] ≤ 0.0001

0.01pw
=

0.01

pw

The maximum value P [R > w] can take is 1, and thus no matter whatever be the value of
w, the last inequality will always be satisfied as long as pw ≤ 0.01 making the ratio 0.01

pw
≥ 1.

(c): The worst possible scenario is where everybody buys the warranty, in which case pw = 1.
In this situation as has just been shown in b above, the profit-goal will be realized as long as
P [R > w] ≤ 0.01 i.e. w ≥ ξ0.99, where ξ0.99 is the 0.99-th quantile of R. Thus the minimum
amount that needs to be charged as the price of the warranty should equal ξ0.99. The only
information we have about R is that it has a continuous symmetric distribution with mean
Rs.2000 and standard deviation Rs.500, based on which we are to figure out ξ0.99. The
only way we can at least find a bound on ξ0.99, based on the above information, is through
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Chebyshev’s inequality. Now note that Chebyshev’s inequality gives probability bounds for
symmetric intervals around the mean, while here we are interested in only the right-tail. But
this can easily be done because of the additional information about the distribution of R
being symmetric. That is by symmetry since P [R > ξ0.99] = P [R < ξ0.01] = 0.01, P [ξ0.01 ≤
R ≤ ξ0.99] = 0.98 and Chebyshev’s inequality says that P [µ − cσ ≤ R ≤ µ + cσ] ≥ 1 − 1

c2
.

Therefore by equating 1 − 1
c2

= 0.98 and solving for c we get that c ≈ 7.0711 and then by
Chebyshev’s inequality it follows that P [2000− 7.0711× 500 ≤ R ≤ 2000 + 7.0711× 500] =
P [0 ≤ R ≤ 5535.53] ≥ 0.98 and thus by symmetry ξ0.99 ≤ 5535.53. Thus the minimum value
of w that guarantees the profit goal irrespective of the value of pw and the exact distribution
of R is Rs.5535.53, as long as E[R] = 2000 and SD[R] = 500.

(d): Rs.5535.53 as the price of an one-year warranty on a Rs.30,000 equipment is preposter-
ous, eroding any competitive edge that X might be envisaging to create by introducing W.
The reason for getting such absurdly high minimum value of w is two-fold. Instead of having
just the mean and variance of R if we had a reasonable model for the distribution of R that
would have given a much sharper estimate of ξ0.99. Thus strategically it will be beneficial
to have a probability model of R and not just its two moments. Additionally, the second
way of reducing the value w would be to keep track of the number of customers buying the
warranty, so that one has a reasonable estimate of pw. This is because recall that in c, we
are dealing with the worst-case scenario of pw = 1. Thus the strategy would be a) model the
distribution of R; and simultaneously b) keep collecting data on number of warranty sold
for estimation of pw. 5

Example 3.12: The c.d.f’s of annual profits of market regions X and Y denoted by X and
Y respectively are as follows:

2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Profit in Crores of Rs.

c.d
.f

X
Y

Which region is more profitable and why?
Solution: Let FX(·) and FY (·) respectively denote the c.d.f.’s of X and Y . Fix any x. Then
from the above graph it is clear that FX(x) ≤ FY (x) or ∀x P [X ≤ x] ≤ P [Y ≤ x], or in
other words, probability of making a profit of x or less in market region Y is more likely
than region X. Thus obviously X is more profitable. In general, for two random variables X
and Y if FX(x) ≤ FY (x) ∀x ∈ <, then X is said to be stochastically larger than Y which

is written as X
st.
≥ Y . 5
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3.4 Transformations

Quite often we have to deal with functions of a r.v.. For example if we have a model for
the side X of a random square, and we are interested in its area, we have to work with the
function g(X) = X2. If the constant velocity V of a particle is random while covering a
fixed distance S, then the time taken to cover this distance is the r.v. g(V ) = S/V , which
is a function of V . If the annual rate of return R of an investment compounded annually is
random but once assumed a value remains fixed at that for n years, then the value of a fixed
investment amount P after n years is the r.v. g(R) = P (1 + R)n, which is again a function
of R.

First let us consider the discrete case i.e. let X be a discrete r.v. with p.m.f. pX(x), and
suppose we are interested in a function Y = g(X) of X. Note that since X is countable,
Y , the sample space of the r.v. Y is also necessarily so. Thus Y would also be a discrete
r.v.. Now pY (y), the p.m.f. of Y is easily figured out as follows. Fix a y ∈ Y and for
finding pY (y) = P [Y = y] look at the set A = {x ∈ X : g(x) = y}, and then obviously
pY (y) =

∑
x∈A pX(x).

Example 3.2 (Continued): Consider the r.v. X denoting the sum of the faces in a roll
of two distinguishable fair die. From Figure 2, depicting its p.m.f., because of symmetry, it
is clear that µX = E[X] = 7. Now let us compute its variance. Obviously one should use
(1) and the law of unconscious statistician to do so, but as an alternative let us attempt
to figure this out from the definition of variance given by the formula σ2

X = E[(X − µX)2].
Thus in order to compute σ2

X from scratch, we need to figure out the distribution of the
r.v. Y = (X − µ)2 and then take its expectation. Since X takes values in {2, 3, . . . , 12},
the possible values that Y can take are 0, 1, 4, 9, 16 and 25. Among these values only
P [Y = 0] = P [X = 7] = 1

6
. For every other value of Y , X can take two possible values

and thus these probabilities need to be added in order to find P [Y = y]. Thus for instance
P [Y = 1] = P [{X = 6} ∪ {X = 8}] = P [X = 6] + P [X = 8] = 5

18
, P [Y = 4] = P [{X =

5} ∪ {X = 9}] = P [X = 5] + P [X = 9] = 2
9

etc. and continuing in this manner the

p.m.f. of Y is found as
y 0 1 4 9 16 25

pY (y) 1
6

5
18

2
9

1
6

1
9

1
18

, which yields σ2
X = µY = E[Y ] =

0× 1
6

+ 1× 5
18

+ 4× 2
9

+ 9× 1
6

+ 16× 1
9

+ 25× 1
18

= 55
6
. 5

Now let us turn our attention to the case where X has a p.d.f. fX(x). Let the c.d.f. of X
be denoted by FX(x). We are interested in the distribution of Y = g(X), a function of X.
Unlike the discrete case, where the formula for pY (y) can be written down for an arbitrary
g(·), here care needs to be taken regarding the nature of g(·). Thus first consider the case
where the function g(·) is one-to-one i.e. g(x1) = g(x2) ⇒ x1 = x2. If g(·) is one-to-one
then it has an inverse in the sense that given a y ∈ Y , the range of g(·), ∃!x ∈ X 3 g(x) = y
and thus g−1(y) = x. Also since g(·) is one-to-one, it is either strictly increasing or strictly
decreasing and correspondingly so is g−1(·). Now let the c.d.f. of Y be denoted by FY (y).

FY (y)

= P [Y ≤ y]

= P [g(X) ≤ y]
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=

{
P [X ≤ g−1(y)] if g(·) is increasing
P [X ≥ g−1(y)] if g(·) is decreasing

=

{
FX (g−1(y)) if g(·) is increasing
1− FX (g−1(y)) if g(·) is decreasing

Thus the p.d.f. of Y is given by

fY (y)

=
d

dy
FY (y)

=

{
d
dy
FX (g−1(y)) if g(·) is increasing

d
dy

[1− FX (g−1(y))] if g(·) is decreasing

=

{
fX (g−1(y)) d

dy
g−1(y) if g(·) is increasing

−fX (g−1(y)) d
dy
g−1(y) if g(·) is decreasing

=


fX (g−1(y))

∣∣∣ d
dy
g−1(y)

∣∣∣ as for increasing g(·), g−1(·), is also increasing and hence
d
dy
g−1(y) > 0 implying

∣∣∣ d
dy
g−1(y)

∣∣∣ = d
dy
g−1(y)

fX (g−1(y))
∣∣∣ d
dy
g−1(y)

∣∣∣ as for decreasing g(·), g−1(·), is also decreasing and hence
d
dy
g−1(y) < 0 implying

∣∣∣ d
dy
g−1(y)

∣∣∣ = − d
dy
g−1(y)

= fX
(
g−1(y)

) ∣∣∣∣∣ ddyg−1(y)

∣∣∣∣∣ (5)

Example 3.13: Suppose the demand curve of a product is given by the equation P = e−
√
Q

where P denotes the Price and Q denotes the Quantity demanded as plotted in the following
figure:
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Demand Curve

Quantity

Pr
ice

Suppose over a long horizon the Price of the product fluctuates on [0, 1] according to the

density given by fP (p) =

{
cp(1− p) if 0 ≤ p ≤ 1
0 otherwise

. What is the distribution of demand

over this horizon?
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Solution: First note that

1

c

=
∫ 1

0
p(1− p)dp

=
1

2
p2

∣∣∣∣p=1

p=0
− 1

3
p3

∣∣∣∣p=1

p=0

=
1

2
− 1

3

=
1

6

so that fP (p) =

{
6p(1− p) if 0 ≤ p ≤ 1
0 otherwise

. In order to find the p.d.f. fQ(q) of Q, expressing

Q in terms of P we obtain that Q = (− logP )2 = g(P ), say. This implies that g(P ) is
strictly decreasing and for 0 ≤ P ≤ 1, 0 ≤ Q < ∞. Now the inverse of g(·) has already
been given as P = g−1(Q) = e−

√
Q so that d

dQ
g−1(Q) = − 1

2
√
Q
e−
√
Q and therefore by (5)

fQ(q) =

{
3q−0.5e−2

√
q
(
1− e−

√
q
)

if 0 ≤ q <∞
0 otherwise

, the graph of which is as follows: 5
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Example 3.14: While traveling eastwards at 60 km.p.h in a straight high-way from A to
B, which are 10 km apart, a break-down van receives a distress call at a random point of
time from a place C located 5 km north of the mid-point of A and B. Assuming that the
van immediately takes a straight-line route to reach the distress point traveling in the same
same speed, find the distribution and the expected amount of time it will take for the van
to reach the distress point after receiving the call.

Solution: Let T denote the amount of time, in minutes, of receiving the distress call since
the break-down van has left A. It will take the van 10 minutes to reach B and since the call is

received at a random point of time, the p.d.f. of T is given by fT (t) =

{
1
10

if 0 ≤ t ≤ 10
0 otherwise

.

Now consider the location of the van and its distance from C at the time of receiving the
distress call as depicted in the following diagram:

30



s s
A B

sC

D

T = 5

E
�
�
�
�
�
�
�
�
�
�
�
�
�
��

T < 5

F
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

T > 5

For T < 5 suppose the van is at point E. Then letting D denote the mid-way point on the
high-way from A to B, the distance

CE

=

√
ED

2
+ CD

2

=
√

(5− T )2 + 25 (as ED = AD− AE = 5− T )

=
√
T 2 − 10T + 50

Similarly for T > 5 if the van is at point F,

CF

=

√
FD

2
+ CD

2

=
√

(T − 5)2 + 25 (as FD = AF− AD = T − 5)

=
√
T 2 − 10T + 50

Thus distance of the van from C at the time of receiving the call is always
√
T 2 − 10T + 50

and thus the amount of time, in minutes it will take the van to reach C is Y =
√
T 2 − 10T + 50

= g(T ), say, as it is traveling at a speed of 60 km.p.h.. The maximum value that Y can take
is attained at T = 0 and as well as at T = 10 and at these points g(T ) =

√
50, while the

minimum value is attained at T = 5 at which g(T ) = 5. Thus the range of values that Y
can assume is given by [5, 5

√
2]. Now note that g(T ) is not one-to-one on its domain [0, 10]

and thus we can no longer use the change of variable formula (5). However the c.d.f. route
that was taken in deriving (5) may be used here for figuring out the p.d.f. of Y . Thus let
FY (y) denote the c.d.f. of Y and let y ∈ [5, 5

√
2].

FY (y)

= P [Y ≤ y]

= P
[√
T 2 − 10T + 50 ≤ y

]
= P

[
T 2 − 10T + 50 ≤ y2

]
(as
√
· is an increasing function)

= P
[
T 2 − 10T + (50− y2) ≤ 0

]
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= P
[(
T − 5−

√
y2 − 25

)(
T − 5 +

√
y2 − 25

)
≤ 0

]
= P

[
5−

√
y2 − 25 ≤ T ≤ 5 +

√
y2 − 25

]
=

1

5

√
y2 − 25

Thus fY (y), the p.d.f. of Y , is given by d
dy
FY (y) = y

5
√
y2−25

for y ∈ [5, 5
√

2], the graph of

which is as follows:
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Now in order to find the expected amount of time (in minutes) it would take the van to
reach C, one needs to find the Expectation of Y having p.d.f. fY (y), which requires a little
bit of integration skill, but is worked out as follows:

E[Y ]

=
∫ ∞
−∞

yfY (y)dy

=
∫ 5
√

2

5

y2

5
√
y2 − 25

dy

= 5
∫ π

4

0
sec3 θdθ (by substituting y = 5 sec θ we get

√
y2 − 25 = 5 tan θ, dy = 5 sec θ tan θdθ

and y = 5⇒ sec θ = 1⇒ θ = 0 & y = 5
√

2⇒ sec θ =
√

2⇒ θ =
π

4
)

=
5

2
[sec θ tan θ + log(sec θ + tan θ)]|θ=

π
4

θ=0 (this is because, integrating by parts we get,∫
sec3 θdθ = sec θ

∫
sec2 θdθ −

∫ {
d

dθ
sec θ

∫
sec2 θdθ

}
dθ = sec θ tan θ −

∫
sec θ tan2 θdθ

= sec θ tan θ −
∫

sec θ
(
sec2 θ − 1

)
dθ = sec θ tan θ −

∫
sec3 θdθ +

∫
sec θdθ, implying∫

sec3 θdθ =
1

2
[sec θ tan θ + log (sec θ + tan θ)] as

∫
sec θdθ = log (sec θ + tan θ) )

=
5

2

[√
2 + log

(
1 +
√

2
)]

≈ 5.74 minutes 5
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The last example is an illustration of the method of handling transformations of continuous
r.v. which are not one-to-one. As a second illustration consider the problem of deriving the
p.d.f. of Y = X2, fY (y) say, for an arbitrary r.v. X having p.d.f. fX(x). The standard
method to do this is to derive it through the c.d.f. route. Thus let FX(x) and FY (y)
respectively denote the c.d.f.’s of X and Y . Then

FY (y)

= P [Y ≤ y]

= P
[
X2 ≤ y

]
= P [−√y ≤ X ≤ √y]

= FX (
√
y)− FX (−√y)

and thus

fY (y)

=
d

dy
FY (y)

=
d

dy
[FX (

√
y)− FX (−√y)]

=
1

2
√
y
fX (
√
y) +

1

2
√
y
fX (−√y)

The density of of X2 as derived above is a special case of the situation where the transfor-
mation Y = g(X) is not one-to-one. In general for many-to-one functions g(·), the method
of deriving fY (y), the p.d.f. of Y = g(X) in terms of fX(x), the p.d.f. of X, is as fol-
lows. Suppose X , the range of values of X, can be partitioned into finitely many disjoint
regions X 1,X 2, . . . ,X k (i.e. X = ∪ki=1X i and X i ∩ X j = φ for i 6= j) in such a manner that
g : X i → Y i.e. g(·) restricted to X i, is one-to-one ∀i = 1, 2, . . . , k, where Y is the range
of values of Y . For i = 1, 2, . . . , k let Y i = g(X i) = {y ∈ Y : y = g(x) for x ∈ X i} denote
the range of g(·) restricted to X i. Note that though X i ∩ X j = φ for i 6= j, Y i ∩ Yj need
not be empty, and as a matter of fact since g : X → Y is many-to-one, some of the Y i’s
will be necessarily overlapping. Now since g : X i → Y i is one-to-one, it has an inverse, say
g−1
i : Y i → X i, and in terms of these k g−1

i (·)’s fY (y) may be expressed as

fY (y) =
k∑
i=1

I[y ∈ Y i]fX
(
g−1
i (y)

) ∣∣∣∣∣ ddyg−1
i (y)

∣∣∣∣∣ (6)

where I[y ∈ Y i] is the indicator function of the set Y i i.e. I[y ∈ Y i] =

{
1 if y ∈ Y i
0 otherwise

.

The intuitive idea behind (6) is a combination of the general solution in the discrete case
and (5). For a y ∈ Y , fY (y), the density of Y at y is such that fY (y)dy ≈ P [y ≤ Y ≤ y+dy]
for dy → 0. For getting this probability we first look back at all those possible x ∈ X which
would have yielded a y = g(x) value in [y, y + dy] and then add them up just as in the
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discrete case. Now for a finitely-many-to-one g(·), for a given y, there are only finitely many
x’s such that g(x) = y and thus the sum mentioned in the last sentence must be a finite
sum. Furthermore the X i’s have been chosen in such a manner that there is at most one
x in each X i such that g(x) = y, and by scanning through the k X i’s one can exhaust all
those x’s in X for which g(x) = y. This explains the sum and the I[y ∈ Y i] part of (5). Now
for an x ∈ X i for which g(x) = y, its contribution towards P [y ≤ Y ≤ y + dy] is given by

fX
(
g−1
i (y)

) ∣∣∣ d
dy
g−1
i (y)

∣∣∣ dy according to (5). This completes the proof of (6).

For an appreciation of (6), again consider the problem of figuring out fY (y), the p.d.f. of
Y = g(X) = X2. Here let X = < = (−∞,∞), the real line and thus Y = [0,∞). Since g(·)
is two-to-one, here k = 2. Let X 1 = (−∞, 0) and X 2 = [0,∞). Thus Y = Y1 = Y2 = [0,∞).
Now g : X 1 → Y1 has the inverse g−1

1 (y) = −√y and g : X 2 → Y2 has the inverse
g−1
2 (y) =

√
y. Thus since I[y ∈ Y ] = 1 ∀y ∈ Y , by (6),

fY (y) = fX (−√y)

∣∣∣∣∣ ddy (−√y)

∣∣∣∣∣+ fX (
√
y)

∣∣∣∣∣ ddy√y
∣∣∣∣∣ =

1

2
√
y
fX (−√y) +

1

2
√
y
fX (
√
y)

coinciding with the earlier result. We finish this section after providing an example that uses
(6).

Example 3.15: A game of chance consists of a circular board with a needle fulcrumed in
its center so that it can freely rotate counter-clockwise only one full circle. A stick hoisted in
the middle of the board prevents the needle from more than one rotation, which also stops
a clockwise rotation in the beginning of the game where the needle is kept touched to the
stick as in the following diagram:

●

θ

The game is as follows. A player strikes the needle using her middle finger and thumb (as for
instance one hits the striker in the game of carom) and the needle rotates counter-clockwise
and comes to a stop. Let θ denote the angle the needle makes in its final resting position
with its initial position in the counter-clockwise direction as has been indicated with the
dotted lines in the above diagram. Note that thus 0 < θ < 2π. Suppose the p.d.f. of θ is

given by fθ(θ) =

{
1
2π

if 0 < θ < 2π
0 otherwise

, and the pay-off of the game is Rs.sin θ. Find the

distribution of the pay-off of the game.

Solution: We begin by examining the graph of sin θ for θ ∈ (0, 2π) which is as follows:
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Thus it is clear that in the given domain of θ, Y = g(θ) = sin(θ) is not one-to-one and thus
we might consider using (6) for finding its p.d.f. fY (y). We begin by disjoint partitioning of

X = (0, 2π), the domain of θ, as X 1 =
(
0, π

2

)
, X 2 =

[
π
2
, π
)
, X 3 =

[
π, 3π

2

)
and X 4 =

[
3π
2
, 2π

)
so that g(·) restricted to each of these X i’s is one-to-one ∀i = 1, 2, 3, 4. It is clear that
Y1 = Y2 = (0, 1] and Y3 = Y4 = [−1, 0]. g(·) restricted to each of the 4 X i’s is one-to-one
with the respective inverses g−1

1 (y) = sin−1(y), g−1
2 (y) = π− sin−1(y), g−1

3 (y) = π− sin−1(y)
and g−1

4 (y) = 2π + sin−1(y), where for y ∈ [0, 1], sin−1(y) is defined to be its principal value

in
[
0, π

2

]
and likewise for y ∈ [−1, 0], sin−1(y) is defined to be its principal value in

[
−π

2
, 0
]
.

Now note that for y ∈ (0, 1], I[y ∈ Y i] is 1 only for i = 1, 2 and likewise for y ∈ [−1, 0),
I[y ∈ Y i] is 1 only for i = 3, 4. Thus by (6) we get that

fY (y)

=



1
2π

[∣∣∣ d
dy

sin−1(y)
∣∣∣+ ∣∣∣ d

dy

(
π − sin−1(y)

)∣∣∣] if 0 ≤ y ≤ 1

1
2π

[∣∣∣ d
dy

(
π − sin−1(y)

)∣∣∣+ ∣∣∣ d
dy

(
2π + sin−1(y)

)∣∣∣+] if − 1 ≤ y < 0

0 otherwise

=


1

π
√

1−y2
if − 1 ≤ y ≤ 1

0 otherwise
5

3.5 Random Vectors

So far we have only talked about the situations where one measures a single quantity X(ω) on
a given sample point ω. But often we shall be measuring multiple quantities, say X1, . . . , Xp,
on a single ω. Since they are measurements on the same ω, though of different variables,
we expect their values to be related. In this section we shall explore how such multiple
(possibly related) variables may be handled. Of particular interest to us is the way one
describes the distribution of values of these multiple variables simultaneously in a population.
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This is because one of the major goals of applied statistical analysis is establishing and
quantitatively modeling relationships between a set of variables in a population given a set
of observations on these variables in a sample. This analysis would be meaningless unless
we have a theoretical description of the quantities of interest summarizing this nature of
relationship in the population, and the material in this section precisely covers this aspect.

For example one might measure both height and weight of an individual and might be
interested in the theoretical relationship they might have between themselves in a population
of individuals. For every month one might have a sales figure and the amount spent on
advertising in monetary terms, and again might be interested in the theoretical relationship
that might exist between these two variables in a hypothetical population of months in the
past and the future. For every employee one can measure his/her motivation level for the
job s/he is doing and his/her compensation level and the interest might rest in describing
how these two variables jointly vary with each other in a population of employees. For a
marketeer of soaps the interest might be in understanding how the preference of k available
brands in the market are distributed across the different possible occupations of consumers
in a population. An operations manager might be interested in the probability of a shipment
reaching the client on time given the size of the shipment. We might be interested in the
probability of a corporate bond defaulting its payment given its profitability ratio.

All the above examples involve two variables and in all of them we are essentially interested
in seeing how the values of two variables are distributed simultaneously. For this we first
begin with the formal definition of such entities.

Definition 3.10: Given a sample space Ω, a random vector X is a simultaneous con-

sideration of p random variables X1(ω), . . . , Xp(ω) with X(ω) =


X1(ω)

...
Xp(ω)

 being a p × 1

vector.

Just as in §2 and §3 where the distributions of random variables were needed to be treated
separately for discrete and continuous cases, here also their treatment will be different.
Furthermore here there are additional complications of some of the Xi’s being discrete and
others being continuous leading to several different cases. To simplify matters we shall first
confine ourselves to the case of p = 2 and discuss the way we define distributions when either
both of them are discrete or both are continuous, and then taking cues from there later on
generalize them for mixed cases and general p.

3.5.1 Discrete Case

Definition 3.11: A bivariate random vector X =

(
X1

X2

)
is called discrete if X ⊆ <2,

the set of possible values X can take is countable.

Note that X is countable if and only if the set of possible values that its two components
X1 and X2 can take, say X 1 and X 2 respectively, are also countable. Before giving the formal
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definition of the way the distribution of such a discrete bivariate random vector is specified,
we first try to get a hang of the concept of a bivariate random vector through a couple of
examples.

Example 3.16: In a toss of two distinguishable fair die, let X1 denote the number on the
first dice and X2 denote the minimum of the two. We want to study the distribution of
these two variables simultaneously. For this we first need to obtain the sample space Ω
of this chance experiment and then look at the pair of values that (X1, X2)

′ can take for
each ω ∈ Ω, each one of which has a probability of 1

36
, in order to come up with their

so called joint distribution. Ω = {(1, 1), . . . , (6, 6)} and for each ω ∈ Ω, X1 takes a value
in {1, . . . , 6}. However when X1(ω) takes the value x1 ∈ {1, . . . , 6}, X2, the minimum of
the two cannot exceed x1 and must take a value in {1, . . . , x1}. Of these, P ((X1, X2)

′ =
(x1, x2)

′) = 1
36

whenever x2 < x1 because in that case there is a unique ω viz. ω = (x1, x2)
for which (X1, X2)

′(ω) = (x1, x2)
′. However the event [(X1, X2)

′(ω) = (x1, x1)
′] = {ω ∈ Ω :

(X1, X2)
′(ω) = (x1, x1)

′} = {(x1, x1), (x1, x1 + 1), . . . , (x1, 6)} has 7 − x1 ω’s in it and thus
P ((X1, X2)

′ = (x1, x1)
′) = 7−x1

36
. These joint probabilities or the probabilities of the joint

event P (X1 = x1 ∩X2 = x2) are typically summarized in a tabular form as follows:

x2 →
x1 ↓

1 2 3 4 5 6

1 6
36

0 0 0 0 0
2 1

36
5
36

0 0 0 0
3 1

36
1
36

4
36

0 0 0
4 1

36
1
36

1
36

3
36

0 0
5 1

36
1
36

1
36

1
36

2
36

0
6 1

36
1
36

1
36

1
36

1
36

1
36 5

Example 3.17: Consider the experiment of randomly distributing 3 distinguishable balls
into 3 distinguishable cells. In this experiment |Ω| = 33 = 27 with P ({ω}) = 1

27
∀ω ∈ Ω, and

for each ω ∈ Ω suppose we are concerned with two variables: X1(ω)= Number of empty cells,
and X2(ω)= Number of balls in cell 1. Then clearly the possible values that X1 can take are
0, 1 and 2 and the possible values that X2 can take are 0, 1, 2 and 3. Now we shall know
everything about the joint behavior of (X1, X2)

′ if we can figure out the probabilities of each
of the possible 3 × 4 = 12 pairs of values that (X1, X2)

′ can take. These joint probabilities
are summarized in the following table followed by their explanations.

x2 →
x1 ↓

0 1 2 3

0 0 6
27

0 0
1 6

27
6
27

6
27

0
2 2

27
0 0 1

27

X1 can take the value 0 only together with X2 = 1, because in this case each cell must
contain exactly one ball each and there are 3! = 6 ways of doing this. [X1 = 1∩X2 = 0] can
happen if and only if the empty cell is the cell 1. Then the 3 balls have to be distributed
in the other 2 cells so that none of them are empty. As such 3 balls can be distributed in 2
cells in 23 = 8 ways but out of that there are 2 cases where all the 3 balls go into one of the
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cells leaving the other one empty. Thus [X1 = 1 ∩X2 = 0] can happen in 8 − 2 = 6 ways.
The number of ways that [X1 = 1 ∩X2 = 1] can happen is argued as follows. First choose

one of the 3 balls in

(
3
1

)
= 3 ways to go to cell 1, and then choose one of the remaining 2

cells in

(
3
1

)
= 2 ways to contain the remaining 2 balls. For counting the number of ways

the event [X1 = 1∩X2 = 2] ca happen, again first choose 2 balls in

(
3
2

)
= 3 ways to go to

cell 1, and then choose one of the remaining 2 cells in

(
3
1

)
= 2 ways to contain the other

remaining ball. If X1 = 2, then one of the cells contains all the 3 balls and the remaining
2 are empty. Thus the event [X1 = 2] can happen together with either X2 = 0 or X2 = 3.
[X1 = 2 ∩ X2 = 0] can happen in one of the 2 cases where either one of the remaining 2
cells contain all the 3 balls, and [X1 = 2 ∩X2 = 3] can happen for the single case of cell 1
containing all the 3 balls. 5

Above two examples illustrate the way one handles the case where both X1 and X2 are
discrete. In this case their joint distribution is expressed in terms of the joint probability
mass function or the joint p.m.f., the definition of which is as follows.

Definition 3.12: A function p : X 1 × X 2 → <, where X 1 and X 2 are countable sets, is
called a joint p.m.f. if

a. ∀x1 ∈ X 1 and ∀x2 ∈ X 2, p(x1, x2) ≥ 0, and

b.
∑
x1∈X 1

∑
x2∈X 2

p(x1, x2) = 1

The joint p.m.f. p(x1, x2) of a random vector X = (X1, X2)
′ gives the joint probabilities

P [X1 = x1 ∩X2 = x2] ∀x1 ∈ X 1 and ∀x2 ∈ X 2. The joint probability tables worked out in
Examples 16 and 17 above thus are nothing but the joint p.m.f. of the respective random
vectors (X1, X2)

′ in those examples. The entire distributional property of the random vector
X is contained in its joint p.m.f. for the case when both of its components X1 and X2 are
discrete. For instance given the joint p.m.f. one can easily figure out the distributions or
p.m.f.’s of each of these components. Thus if pi(xi) denotes the p.m.f. of Xi for i = 1, 2 they
can be easily figured out from the joint p.m.f. p(x1, x2) as follows:

p1(x1)

= P [X1 = x1]

= P [∪x2∈X2 {X1 = x1 ∩X2 = x2}] (as the event [X1 = x1] = ∪x2∈X2 [X1 = x1 ∩X2 = x2])

=
∑
x2∈X2

P [X1 = x1 ∩X2 = x2] (as [X1 = x1 ∩X2 = x2] ∩ [X1 = x1 ∩X2 = x′2] = φ for x2 6= x′2)

=
∑
x2∈X2

p(x1, x2)

and similarly p2(x2) =
∑
x1∈X1

p(x1, x2). Since these distributions are found as the row and
column sums of a joint p.m.f. table, they are written at its margin and are thus called
marginal distributions.
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Example 3.16 (Continued): The marginal p.m.f. of X1 is given by p1(x1) = 1
6
∀x1 ∈

{1, 2, 3, 4, 5, 6}, as it should be, because X1 simply denotes the outcome of rolling the first
dice, and it agrees with the row totals of the joint p.m.f. table. The marginal p.m.f. of X2

is found from the column sums yielding its marginal p.m.f. as

x2 1 2 3 4 5 6
p2(x2)

11
36

9
36

7
36

5
36

3
36

1
36 5

Example 3.17 (Continued): The marginal p.m.f. of X1 and X2 are found respectively as
row and column totals as follows:

x2 →
x1 ↓

0 1 2 3 p1(x1)

0 0 6
27

0 0 6
27

1 6
27

6
27

6
27

0 18
27

2 2
27

0 0 1
27

3
27

p2(x2)
8
27

12
27

6
27

1
27

1 5

One of the major reasons for studying the joint distribution or the distribution of both
the components simultaneously is that it enables one to study the dependence structure, if
any, between the two components X1 and X2 of a random vector X. The joint distribution
contains this association structure between X1 and X2 in sort of an implicit form, which is
explicitly brought out by introducing the notion of conditional distributions. There are
two sets of conditional distributions: conditional distributions of X1|X2 and the conditional
distributions of X2|X1. Note the plural in “sets of conditional distributions”. This is because
for every x2 ∈ X 2 there is a conditional distribution of X1|X2 = x2 and thus there are
|X 2| many conditional distributions of X1|X2 and similarly there are |X 1| many conditional
distributions of X2|X1. Thus fix an x2 ∈ X 2 and let us see what we mean by the conditional
distribution of X1|X2 = x2. For x1 ∈ X 1, the conditional p.m.f. of X1|X2 = x2 gives
P [X1 = x1|X2 = x2], which is denoted by p1|2(x1|x2), and is as follows:

p1|2(x1|x2)

= P [X1 = x1|X2 = x2]

=
P [X1 = x1 ∩X2 = x2]

P [X2 = x2]

=
p(x1, x2)

p2(x2)
.

Similarly for a fixed x1 ∈ X 1, for x2 ∈ X 2, the conditional p.m.f. of X2|X1 = x1, denoted by
p2|1(x2|x1), is given by p2|1(x2|x1) = p(x1, x2)/p1(x1). Thus the conditional p.m.f. is just the
ratio of the joint p.d.f. to the marginal p.d.f. of the conditioning variable.

Example 3.16 (Continued): There are 6 conditional p.m.f’s p1|2(x1|x2) and likewise there
are 6 p2|1(x2|x1)’s. With the marginals p2(x2) and p1(x1) already derived above, a straight-
forward division yields
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p1|2(x1 ↓ |x2 →) 1 2 3 4 5 6

1 6/11 0 0 0 0 0
2 1/11 5/9 0 0 0 0
3 1/11 1/9 4/7 0 0 0
4 1/11 1/9 1/7 3/5 0 0
5 1/11 1/9 1/7 1/5 2/3 0
6 1/11 1/9 1/7 1/5 1/3 1

p2|1(x2 → |x1 ↓) 1 2 3 4 5 6

1 1 0 0 0 0 0
2 1/6 5/6 0 0 0 0
3 1/6 1/6 4/6 0 0 0
4 1/6 1/6 1/6 3/6 0 0
5 1/6 1/6 1/6 1/6 2/6 0
6 1/6 1/6 1/6 1/6 1/6 1/6 5

Example 3.17 (Continued): Similarly straight forward division gives the 4 p1|2(x1|x2)’s
and 3 p2|1(x2|x1)’s as:

p1|2(x1 ↓ |x2 →) 0 1 2 3 p2|1(x2 → |x1 ↓) 0 1 2 3
0 0 1/2 0 0 0 0 1 0 0
1 3/4 1/2 1 0 1 1/3 1/3 1/3 0
2 1/4 0 0 1 2 2/3 0 0 1/3 5

With the conditional distributions defined as above we are now in a position to define
independence of two discrete r.v.’s. Recall that two events A and B were defined to be
independent if P (A|B) = P (A). We have a similar definition in case of random variables.

Definition 3.13: Two discrete random variables X1 and X2 are said to be statistically
or stochastically independent if, p1|2(x1|x2), the conditional p.m.f. of X1|X2 = x2 does
not depend on x2.

At this juncture it would be apt to point out that while doing probability/statistics, in-
dependence always means statistical/stochastic independence, and thus we shall drop the
qualifying adverb statistical/stochastic. We shall encounter situations where independence
would mean physical or logical independence. We shall be careful in those situations to
distinguish the two but as shall be seen, these two notions of independence will be used in-
terchangeably but mathematically independence will always be treated as it has been defined
in Definition 13 or its equivalent forms.

While Definition 3.13 is intuitively very appealing, the same viz. independence of two
discrete X1 and X2, may also be expressed in various alternative but equivalent ways, many
a times which are much easier to check or apply (as the case may be - “checking” for
independence or “applying” after assuming physical or logical independence). The first
question is, if p1|2(x1|x2) does not depend on x2, then what do these |X 2| many conditional
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distributions equal to across all the x2 ∈ X 2? Since p1|2(x1|x2) does not depend on x2, let
p1|2(x1|x2) = q(x1), say. Then

p1|2(x1|x2) = q(x1) ∀x1 ∈ X 1 &x2 ∈ X 2

⇒ p(x1, x2)

p2(x2)
= q(x1) ∀x1 ∈ X 1 &x2 ∈ X 2 (by definition of the conditional p.m.f. p1|2(x1|x2))

⇒ p(x1, x2) = p2(x2)q(x1) ∀x1 ∈ X 1 &x2 ∈ X 2

⇒
∑
x2∈X2

p(x1, x2) = q(x1)
∑
x2∈X2

p2(x2) ∀x1 ∈ X 1

⇒ p1(x1) = q(x1) ∀x1 ∈ X 1 (since p1(x1) =
∑
x2∈X2

p(x1, x2) and
∑
x2∈X2

p2(x2) = 1 as it is the

marginal p.m.f. of X2)

This shows that if X1 and X2 are independent, then the all the |X 2| many conditional
p.m.f.’s p1|2(x1|x2) of X1|X2 coincide with p1(x1), the marginal p.m.f. of X1. Conversely,
if all the |X 2| many conditional p.m.f.’s of X1|X2 coincide with the marginal p.m.f. of X1,
then obviously p1|2(x1|x2) does not depend on x2, and thus by definition, X1 and X2 must
be independent. Therefore we see that independence is equivalent to the condition of all the
conditional p.m.f.’s of X1|X2 being identical to the marginal p.m.f. of X1. Now if that is
the case,

p1|2(x1|x2) = p1(x1)⇔
p(x1, x2)

p2(x2)
= p1(x1)⇔ p(x1, x2) = p1(x1)p2(x2)

showing that independence of two discrete r.v. is equivalent to the condition of the joint
p.m.f. being the product of the two marginal p.m.f.’s. This result is analogous to the
corresponding result for the independence of two eventsA andB, which states that two events
are independent if and only if P (A ∩ B) = P (A)P (B). Just as in the case of independence
of events, though we had defined independence as P (A|B) = P (A), later after establishing
the equivalence of independence with P (A∩B) = P (A)P (B), we observed that this implies
P (B|A) = P (B), as it should do logically; here also the same remark holds true. Thus
independence of two discrete r.v. X1 and X2 is equivalent to the condition that p2|1(x2|x1),
the conditional p.m.f. of X2|X1 = x1, does not depend on x1 and all these |X 1| many
conditional p.m.f. coincide with p2(x2), the marginal p.m.f. of X2.

X1 and X2 of Examples 3.16 and 3.17 are not independent. This is because in Example
16 for instance, p(3, 5) = P (X1 = 3&X2 = 5) = 0 6= 1

6
· 1

12
= P (X1 = 3)P (X2 = 5) =

p1(3)p2(5). Likewise in Example 17 p(1, 3) = P (X1 = 1&X2 = 3) = 0 6= 2
3
· 1

27
= P (X1 =

1)P (X2 = 3) = p1(1)p2(3). Thus if the equality p(x1, x2) = p1(x1)p2(x2) is violated even for
one pair (x1, x2) then X1 and X2 are not independent. This is because for X1 and X2 to be
independent, p(x1, x2) must equal p1(x1)p2(x2) ∀x1 ∈ X 1 and ∀x2 ∈ X 2.

Example 3.18: Consider the experiment of randomly permuting the 4 letters a, b, c and d.

For this experiment |Ω| = 4! = 24. For a given ω ∈ Ω defineX1(ω) =

{
1 if a precedes b in ω
0 otherwise

and X2(ω) =

{
1 if c precedes d in ω
0 otherwise

. Then the event [X1 = 1&X2 = 1] can happen in
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6 ways. This is because for X1 = 1 to happen, there are 3 positions where a can be placed
viz. 1, 2 and 3. If a is at position 1, then b can be placed in either positions 2, 3, or 4,
and in each of these cases the positions of c and d get fixed (b at 2 forces c to be at 3 and
d to be at 4, b at 3 forces c to be at 2 and d to be at 4, and b at 4 forces c to be at 2 and
d to be at 3) leading to 3 possibilities. If a is at 2, b can be at either 3 or 4, and again
the positions of c and d get automatically fixed (b at 3 forces c at 1 and d at 4, and b at
4 forces c at 1 and d at 3), this time leading to 2 possibilities. Finally if a is at 3, then b
has to be at 4, c has to be at 1 and d has to be at 2, leading to the single possibility. This
reasoning yields that {ω : X1(ω) = 1&X2(ω) = 1} = {abcd, acbd, acdb, cabd, cadb, cdab} and
thus P [X1 = 1&X2 = 1] = 6

24
= 1

4
. In the preceding argument by interchanging the roles

of c and d, a and b, and both a and b and c and d we respectively find P [X1 = 1&X2 = 0],
P [X1 = 0&X2 = 1] and P [X1 = 0&X2 = 0] all equal 1

4
. Thus the joint p.m.f. of (X1, X2)

′

and the two marginals p.m.f.’s are given by

x2 →
x1 ↓

0 1 p1(x1)

0 1/4 1/4 1/2
1 1/4 1/4 1/2

p2(x2) 1/2 1/2 1

From the above table it is clear that ∀ x1 ∈ X 1 = {0, 1} and x2 ∈ X 2 = {0, 1}, p(x1, x2) =
1
4

= 1
2
· 1

2
= p1(x1)p2(x2). Therefore in this example X1 and X2 are independent. 5

Just as in case of events, here also independence is used both ways. That is, there are
situations where given a joint p.m.f. one would need to check whether X1 and X2 are
independent as in Example 18. Conversely there will be situations where at the outset
independence would be assumed from the physical or logical structure of the problem, which
is then exploited for figuring out the joint p.m.f.. The most common application of this later
type is that of so-called “independent trials” which we have already been using without any
explicit reference to the joint distribution. An example should help clarify the point.

Example 3.19: Suppose we have a biased dice with the following p.m.f. for the outcome X
of rolling it once:

x 1 2 3 4 5 6
pX(x) 0.1 0.2 0.2 0.2 0.2 0.1

Now suppose the dice is rolled twice and let Xi denote the outcome of the i-th roll, i = 1, 2.
We are interested in the distribution of the sum Y = X1+X2 just as in Example 2. However
in Example 2 since the dice was assumed to be unbiased, we did not have any problem
in assigning equal probabilities to the 36 possible ω’s of this experiment, and did not really
have to go through the joint distribution route. Here however we have to first determine the
joint distribution of (X1, X2)

′, which in turn will be used to figure out the distribution of
the sum Y . Towards this end, since the two rolls are physically independent it may be quite
reasonable to assume that X1 and X2 are also statistically independent7. Furthermore the
marginal p.m.f. of both X1 and X2 are same as pX(·). Thus for x1 ∈ X 1 = {1, 2, 3, 4, 5, 6}

7Note the care in bothering to state the nature of independence viz. physical vis-a-vis stochastic, as
mentioned in the paragraph following Definition 13.
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and x2 ∈ X 2 = {1, 2, 3, 4, 5, 6}, the joint p.m.f. p(x1, x2) = p1(x1)p2(x2) = pX(x1)pX(x2),
which may be expressed in a tabular form as follows:

x2 →
x1 ↓

1 2 3 4 5 6

1 0.01 0.02 0.02 0.02 0.02 0.01
2 0.02 0.04 0.04 0.04 0.04 0.02
3 0.02 0.04 0.04 0.04 0.04 0.02
4 0.02 0.04 0.04 0.04 0.04 0.02
5 0.02 0.04 0.04 0.04 0.04 0.02
6 0.01 0.02 0.02 0.02 0.02 0.01

Now for the p.m.f. of Y = X1 + X2 we have to look at the value of Y for each of the
36 possibilities of (x1, x2) ∈ {1, 2, 3, 4, 5, 6}2 and then add the p(X1, x2) values for those
(x1, x2)’s yielding the same value of Y . This gives the p.m.f. of Y as

y 2 3 4 5 6 7 8 9 10 11 12
pY (y) 0.01 0.04 0.08 0.12 0.16 0.18 0.16 0.12 0.08 0.04 0.01 5

While conditional distributions depict the association between X1 and X2 quite accurately,
the information content in them is very large. This leads us to seek some key summary
measures which can capture this degree of association between two r.v.. This is analogous to
defining mean as a measure of location of a distribution despite having the entire distribution
at one’s disposal. We start by defining a measure of association called covariance.

Definition 3.14: Covariance of two random variablesX1 andX2 is given byE [(X1 − E[X1])
(X2 − E[X2])] and is denoted by Cov(X1,X2).

In order to understand the motivation behind this definition, let us study the sign of the
product (X1 −E[X1])(X2 −E[X2]). If X2 tends to take higher (lower) values for high (low)
values of X1, then that implies that if X1 − E[X1] > 0 (X1 − E[X1] < 0), with a high
probability X2 −E[X2] will also tend to be positive (negative). In such a situation, X1 and
X2 have an increasing relationship and (X1 − E[X1])(X2 − E[X2]) will have a positive sign
with high probability leading to a positive Cov(X1,X2). On the other hand if X1 and X2

have a decreasing relationship i.e. X2 tends to take lower (higher) values for higher (lower)
values of X1, then X1 − E[X1] > 0 (X1 − E[X1] < 0) ⇒ X2 − E[X2] < 0 (X2 − E[X2] > 0)
with a high probability, making Cov(X1,X2) negative.

Though the sign of the covariance in a nut-shell depicts whether X1 and X2 have an increas-
ing or decreasing relationship, caution must be exercised in this interpretation of covariance.
If the relationship is highly curvy-linear, an increasing or decreasing relationship is mean-
ingless and in such situations, so is covariance. Thus covariance as a measure of degree of
association only makes sense when the relationship between X1 and X2 is approximately
linear so that one can assign a clear-cut meaning to a relationship being increasing or de-
creasing. Therefore the sign of covariance is best interpreted as the sign of linear association
between two random variables X1 and X2.
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In the last sentence, instead of “sign”, it would have been nice if we could have said that
covariance is a measure of “degree” of linear association. But unfortunately we cannot do that
because the raw numerical value of the covariance is mired with other incidental nuisance
factors. To see this first observe that if either X1 or X2 has a large variability that will
inflate the covariance when this variability factor should have nothing to do with a measure
of association between two variables. That is for example since8 Cov(cX1,X2)=cCov(X1,X2),
though the degree of linear association between cX1 and X2 is same as that between X1 and
X2, for c > 1 the former pair would have a larger covariance, rendering just the raw numerical
value of covariance (without any further adjustment) rather useless as a measure of degree
of linear association. Second, a measure of degree of association, linear or otherwise, should
be a pure number that does not depend on the unit of measurement. For appreciating
this point, consider the problem of measuring association between heights and weights of
individuals. The degree of association is that between the concept of height and weight,
and not between say foot-pound or meter-kilogram i.e. the degree of association should not
depend on whether the height is measured in foot or meter or the weight is measured in
pound or kilogram. However the raw covariance value in the foot-pound case is different
from the meter-kilogram one, again rendering just the raw covariance value (without any
further adjustment) useless as a measure of degree of association.

Once we recognize the problems, the solution now becomes rather obvious. We can retain
covariance as the basic measure, provided it is appropriately scaled making it unit free and
insensitive to the variabilities in X1 and X2. But formula-wise it will be a different quantity
requiring a separate name. This quantity is called the correlation coefficient as defined
below.

Definition 3.15: Correlation coefficient of two random variables X1 and X2 is given by
Cov(X1,X2)√
V [X1]V [X2]

and is denoted by ρX1,X2 or simply ρ when dealing with just two variables.

The correlation coefficient ρ is a pure number, free of the units as well as the variability
of the original variables. Also note that it is essentially a covariance based measure of
association but is free of the pitfalls of just the raw covariance. To see that it is basically
a covariance, but being measured in a standardized scale free of unit and variability, for
i = 1, 2 define Zi = Xi−µi

σi
where µi and σi respectively are the mean and standard deviation

of Xi. Now since E[Zi] = 0 and V [Zi] = 1,

ρZ1,Z2

= Cov(Z1, Z2)

= E[Z1Z2]

= E
[
X1 − µ1

σ1

X2 − µ2

σ2

]
=

E[(X1 − E[X1])(X2 − E[X2]]√
V [X1]V [X2]

8See Appendix B, where the properties of moments, including that of covariance, have been assembled
together.
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=
Cov(X1, X2)√
V [X1]V [X2]

= ρX1,X2

Thus the correlation coefficient between X1 and X2 is nothing but the covariance between
Z1 and Z2, where Z1 and Z2 are such that they are unit free (since Xi − µi and σi have the
same unit) with unit variance.

Since correlation coefficient is a covariance based measure and the kind of association that
is meaningfully captured by the covariance is linear, now we can say that the correlation
coefficient may be interpreted as the degree of linear association. Since the sign of correlation
coefficient is inherited from the covariance, its sign indicates whether the relationship is
increasing or decreasing, and furthermore unlike the raw covariance, its numerical value is
very nicely interpretable as it has been shown in Appendix B that −1 ≤ ρ ≤ 1, with equality
(±1) if and only if X2 = a+bX1 for some constants a and b i.e. when there is an exact linear
relationship between X1 and X2. Larger the absolute value of ρ more linear is the association
between them. The exact interpretation of the numerical value of ρ will be deferred till the
Applied Statistics chapters. At this point it is advisable to read Appendix B assimilating
the properties of covariance and ρ before proceeding any further.

If the nature of association between X1 and X2 is linear then the single number correlation
coefficient is a useful quantity for measuring this degree of association. But in general how
can one summarize the association between X1 and X2? If the relationship is non-linear,
on the surface it appears that a single number may not be able to do the job9, and instead
we seek a function that would be useful in depicting the relationship. Ultimately the entire
story of the nature of relationship is contained in the conditional distributions and here
we are seeking how to summarize this vast information. The most common and intuitively
appealing way of summarizing a distribution is to quote its mean or expected value. When
we do the same with the conditional distributions it is called regression, which is formally
defined as follows.

Definition 3.16: The function g(x2) = E[X1|X2 = x2] =
∑
x1∈X1

x1p1|2(x1|x2) i.e. the
conditional mean of X1|X2 is called the regression of X1 on X2.

First note that the mean is being computed using the conditional distribution, and hence
it is the conditional mean. Second point to note is that the conditional distribution of
X1|X2 and thus the mean as well, depends on the conditioning value x2 of X2, and thus
E[X1|X2 = x2] is a function of x2 and as such E[X1|X2] is a r.v. since X2 is. As stated
earlier the best thing to do for depicting the association would be carrying around all the |X 2|
many conditional distributions of X1|X2. But since this information may be overwhelming,
the next best thing to do would be at least carrying the simplest summary measure viz. the
mean, of all these conditional distributions. Since there are |X 2| many of these conditional
means E[X1|X2], one for each x2 ∈ X 2, their totality can be viewed as a function of x2, and
is named regression of X1 on X2.

Example 3.16 (Continued): Based on the conditional distributions, the two regressions,

9Strictly speaking this is not true, as shall be seen later in the Applied Statistics chapters.
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X1 on X2 and X2 on X1 is given as follows:

x1/x2 1 2 3 4 5 6

E[X1|X2] 26/11 28/9 27/7 23/5 16/3 6
E[X2|X1] 1 2 5/2 3 10/3 7/2

which are also plotted in the following two graphs:
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The reason for graphing is for emphasizing the fact that regression is a function and is thus
best interpreted in terms of its graphs. From these two graphs it also appears that the
regression of X1 on X2 is approximately linear while that of X2 on X1 is a curvy-linear
concave function of x1. However on the domain of x1, though curvy-linear, E[X2|X1 = x1]
is an increasing function of x1, and thus computation of the correlation would make some
sense here and we shall expect it to be positive.

In order to find ρ, the first thing we need is Cov(X1, X2). For this we shall use the short-cut
formula Cov(X1, X2) = E[X1X2]− E[X1]E[X2] given in Appendix B.

E[X1X2]

=
∑
x1

∑
x2

x1x2p(x1, x2)

=
1

36
[{6 + (2 + 3 + 4 + 5 + 6)}+ {4× 5 + 2(3 + 4 + 5 + 6)}+ {9× 4 + 3(4 + 5 + 6)}

+ {16× 3 + 4(5 + 6)}+ {25× 2 + 30}+ 36]

=
371

36

Based on the marginal p.m.f. of X1, we find that E[X1] = 7/2 and E[X2
1 ] = 91/6; and from

p2(x2), we find that E[X2] = 91/36 and E[X2
2 ] = 301/36. Thus we get that

Cov(X1, X2) =
371

36
−7

2
·91

36
=

105

72
, V [X1] =

91

6
−49

4
=

35

12
, and V [X2] =

301

36
−912

362
=

2555

362
,

so that ρ =
105
72
× 36√

35×2555
12

≈ 0.6082 5
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Example 3.17 (Continued): Here let us first find the correlation coefficient ρ.

E[X1X2]

=
∑
x1

∑
x2

x1x2p(x1, x2)

=
1

27
[6 + 12 + 6]

=
8

9

E[X1] =
8

9
, E[X2

1 ] =
10

9
E[X2] = 1, and E[X2

2 ] =
5

3

Thus since Cov(X1, X2) = 8
9
− 1 · 8

9
= 0, ρ = 0. However note that we have already

established that in this example X1 and X2 are not independent. Thus here is an example
of two random variables X1 and X2 which are not independent despite their correlation
coefficient (covariance) being 0. (See Property C5 of Appendix B.)

Based on the conditional distributions p1|2(x1|x2) and p2|1(x2|x1) we find the regression of
X1 on X2 and X2 on X1 as follows:

x2 0 1 2 3 x1 0 1 2
E[X1|X2] 5/4 1/2 1 2 E[X2|X1] 1 1 1

Note that based on the two regression functions it may be concluded that there is no obvious
relationship between X1 and X2. While the regression of X1 on X2 shows an initially
decreasing and then increasing relationship, that of X2 on X1 is flat. Thus though X1 and
X2 are not independent, since their relationship is not even approximately linear, correlation
coefficient, which is 0 anyway, is not very useful in summarizing their relationship. 5

We finish this sub-section after working out a couple of problems involving discrete joint
distribution.

Example 3.20: The joint p.m.f. p(x, y) of Y , the number of completed projects in a given
year, and age X, of engineers, working for a software firm is as follows:

y →
x ↓ 0 1 2

21 0.05 0.03 0.02
22 0.08 0.22 0.10
23 0.05 0.18 0.07
24 0.06 0.12 0.02

Answer the following:

a. What is the probability that an engineer has finished at least one project?

b. What is the probability that an engineer is 22 years or younger?

c. What is the probability that an engineer is 22 years or younger and has finished at least
one project?

d. What is the probability that an engineer who is 22 years or younger has finished at least
one project?
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e. What is the most likely number of completed projects by engineers who are 22 years or
younger?

f. What is the probability that an engineer who has finished at least one project is 22 years
or younger?

g. What is the average Age of the engineers finishing at least one project?

h. Give the marginal c.d.f. of Y .

i. Are X and Y independent?

j. Find the correlation coefficient between X and Y .

k. Find the regression of Y on X and use it to determine the most productive age of the
engineers.

Solution (a): P (Y ≥ 1) =
∑24
x=21

∑2
y=1 P (X = x, Y = y) = 1 −∑24

x=21 P (X = x, Y = 0) =
1− 0.24 = 0.76.
(b): P (X ≤ 22) =

∑22
x=21

∑2
y=0 P (X = x, Y = y) = 0.5.

(c): P (X ≤ 22∩ Y ≥ 1) =
∑22
x=21

∑2
y=1 P (X = x, Y = y) = 0.03 + 0.02 + 0.22 + 0.10 = 0.37.

(d): P (Y ≥ 1|X ≤ 22) = P (X≤22∩Y≥1)
P (X≤22)

= 0.37
0.5

= 0.74.

(e): For answering this question, we need to look at the conditional distribution of Y |X ≤ 22.

That is we need to find P (Y = y|X ≤ 22) for y = 0, 1, 2. P (Y = 0|X ≤ 22) = P (Y=0∩X≤22)
P (X≤22)

=
0.05+0.08

0.5
= 0.26. After calculating P (Y = 1|X ≤ 22) and P (Y = 2|X ≤ 22) in a similar

fashion we find

y 0 1 2
P (Y = y|X ≤ 22) 0.26 0.50 0.24

as the conditional p.m.f. of Y |X ≤ 22, form which it is now obvious that the most likely
number of projects completed by engineers who are 22 years or younger is 1.
(f): P (X ≤ 22|Y ≥ 1) = P (X≤22∩Y≥1)

P (Y≥1)
= 0.37

0.76
≈ 0.4868.

(g): For answering this, like e, we need to find the conditional distribution of X|Y ≥ 1.

P (X = 21|Y ≥ 1) = (X=21∩Y≥1)
P (Y≥1)

= 0.03+0.02
0.76

≈ 0.0658. Proceeding in a similar manner we

find that the conditional p.m.f. of X|Y ≥ 1 is given by

x 21 22 23 24
P (X = x|Y ≥ 1) 0.0658 0.4211 0.3289 0.1842

which yields E[X|Y ≥ 1] = 21× 0.0658 + 22× 0.4211 + 23× 0.3289 + 24× 0.1842 = 22.6315.
(h): pY (y), the marginal p.m.f. of Y , is found as the column sums of the joint p.m.f. table,
which is given by

y 0 1 2
pY (y) 0.24 0.55 0.21

and thus the marginal c.d.f. of Y is given by FY (y) =


0 if y < 0
0.24 if 0 ≤ y < 1
0.79 if 1 ≤ y < 2
1 if y ≥ 2

.

(i): P (X = 21, Y = 0) = 0.05 6= 0.1× 0.24 = P (X = 21)P (Y = 0) for instance, and thus X
and Y are not independent.
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(j): By property Property R3 of correlation coefficient since ρ is invariant under linear
transformation, to facilitate computation we shall work with Z = X − 21 instead of X i.e.
we shall find ρZ,Y which is same as ρX,Y . E[ZY ] = 0.22+0.36+0.36+0.2+0.28+0.12 = 1.54.
Since the marginal distribution of Y has already been found in part h, we now need to find
the marginal p.m.f. pZ(z) of Z which is as follows:

z 0 1 2 3
pZ(z) 0.1 0.4 0.3 0.2

.

This yields E[Z] = 1.6 and E[Z2] = 3.5 so that V [Z] = 0.94. Likewise using the marginal
p.m.f pY (y) of Y in h we get, E[Y ] = 0.97 and E[Y 2] = 1.39 so that V [Y ] = 0.9409.
Cov(Z, Y ) = E[ZY ] − E[Z]E[Y ] = 1.54 − 1.6 × 0.97 = −0.012 and thus ρX,Y = ρZ,Y =
−0.012√

0.94×0.9409
≈ −0.0128.

(k): The conditional distribution of Y |X is given by

pY |X(y → |X = x ↓) 0 1 2
21 0.50 0.30 0.20
22 0.20 0.55 0.25

23 0.16̇ 0.60 0.23̇
24 0.30 0.60 0.10

and thus the regression of Y |X or E[Y |X = x] is given by

x 21 22 23 24

E[Y |X = x] 0.70 1.05 1.06̇ 0.8
.

the graph of which is as follows:
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Thus the most productive age of the engineers is 23. 5

Example 3.21: Let X denote the sugar content (in gm.) and Y denote the preference score
(larger the better) of customers for a 100 gm. cup of a certain brand of ice-cream. The joint
p.m.f. p(x, y) of (X, Y ), estimated after a market survey, is as follows:

y →
x ↓ 1 2 3

5 0.15 0.12 0.03
7 0.08 0.12 0.20
10 0.06 0.12 0.12
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Answer the following:

a. What is the probability of a customer giving a score of at least 2 to ice-creams containing
at least 7 gm. of sugar?

b. Find the conditional distributions of Y given X and based on their stochastic ranking
recommend the optimal level of sugar content for the ice-cream.

Solution (a): P (Y ≥ 2|X ≥ 7) = P (Y≥2∩X≥7)
P (X≥7)

= 0.12+0.20+0.12+0.12
0.4+0.3

= 0.8.

(b): The conditional p.m.f.’s of Y |X = x is given by

pY |X(y → |X=x ↓) 1 2 3
5 0.5 0.4 0.1
7 0.2 0.3 0.5
10 0.2 0.4 0.4

and the conditional c.d.f.’s FY |X(y|X = x) based on the above conditional p.m.f.’s are as
follows:

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional c.d.f.'s of Y|X

y

F Y
|X

(y
|X

=x
)

(

● (

● (● (

● (

● (

● (

●

FY|X(y|X=5)
FY|X(y|X=7)
FY|X(y|X=10)

From the above plots it is clear that ∀y ∈ < FY |X(y|X=7) ≤ FY |X(y|X=10) ≤ FY |X(y|X=
5). Thus we are in a (rare) situation here where there is a clear-cut stochastic ranking

of the conditional distributions of Y |X. Y |X = 7
st.
≥ Y |X = 10

st.
≥ Y |X = 5 and thus

the customer preference scores, though random, are clearly stochastically the largest when
X= 7. Therefore the optimal sugar content should be 7. Note that the stochastic ordering

Y |X = 7
st.
≥ Y |X = 10

st.
≥ Y |X = 5 necessarily implies that E[Y |X = 7] ≥ E[Y |X = 10] ≥

E[Y |X=5] which can also be independently and directly verified through the computation of
the regression function E[Y |X=5] = 1.6, E[Y |X=7] = 2.3 and E[Y |X=10] = 2.2. However
the other way round need not be necessarily true i.e. in general E[Y |X = x1] > E[Y |X =

x2] 6⇒ Y |X = x1

st.
≥ Y |X = x2. Thus in a rare situation such as in this example, where

the conditional distributions can be ordered, decisions can be taken based on the totality
of the conditional distributions without resorting to regression. In general however such an
ordering may not be possible which forces one to use the next best thing viz. regression to
take such decisions. 5
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3.5.2 Continuous Case

Just as in the case of the univariate random variables, here also the bivariate continuous
random vector is defined in terms of the continuity of the bivariate c.d.f.. However unlike
the univariate case where the c.d.f. was defined during the discussion of discrete case itself,
here we are yet to define the bivariate c.d.f..

Definition 3.17: For a bivariate random vector X =

(
X1

X2

)
, its c.d.f. is given by

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2).

Definition 3.18: A bivariate random vector X =

(
X1

X2

)
is said to be continuous if its

c.d.f. F (x1, x2), a function of two variables, is a continuous function of (x1, x2).

The utility of c.d.f. in probability computation was fairly convincing in the univariate case,
where it was demonstrated how to compute probabilities of intervals using the c.d.f.. In two
dimension the analogue of intervals are rectangles. The way probabilities of rectangles in a
plane are determined by a bivariate c.d.f. may be understood with the help of the following
diagram:

(a,b)

(a,d)
(c,d)

(c,b)
●

●

●

●

A

B

C

D

That is, suppose we are interested in the probability of the random vector taking values in the
rectangle A in the above diagram with the points (a, b) and (c, d) respectively as its north-east
and south-west corners with c < a and d < b i.e. A = [{c < X1 ≤ a} ∩ {d < X2 ≤ b}]. Now
F (a, b) gives the probability of the union of rectangles A∪B∪C ∪D, where B, C and D are
respectively used to denote the (potentially infinite) rectangles [{c < X1 ≤ a} ∩ {X2 ≤ d}],
[{X1 ≤ c} ∩ {d < X2 ≤ b}] and [{X1 ≤ c} ∩ {X2 ≤ d}]. Note that F (c, b) = P (C ∪ D),
F (a, d) = P (B ∪D) and F (c, d) = P (D). Thus

P (A)

= P (A ∪B ∪ C ∪D)− P (B ∪ C ∪D)

= F (a, b)− {P (C ∪D) + P (B ∪D)− P (D)}
= F (a, b)− F (c, b)− F (a, d) + F (c, d) (7)

Thus since the probability of any rectangle may be computed using the c.d.f. so will be the
probability of any set in the plane which can be approximated by rectangles.

Now let us study the consequence of F (·, ·) being continuous over the plane <2. Fix any
(x1, x2) ∈ <2 and consider a small rectangle around it given by [{x1 < X1 < x1+dx1}∩{x2 <
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X2 < x2 + dx2}]. If dx1 and dx2 are positive, by (7)

P [{x1 < X1 ≤ x1 + dx1} ∩ {x2 < X2 ≤ x2 + dx2}]
= F (x1 + dx1, x2 + dx2)− F (x1, x2 + dx2)− F (x1 + dx1, x2) + F (x1, x2) (8)

and thus

lim
dx1 → 0
dx2 → 0

P [{x1 < X1 ≤ x1 + dx1} ∩ {x2 < X2 ≤ x2 + dx2}] = P [X1 = x1, X2 = x2] = 0

As a matter of fact, not just a single point like (x1, x2) , using (7) and a little bit of mathemat-
ical analysis one can show that probability of any “one-dimensional” subset (e.g. [X1 = x1],
[X2 = x2], [aX1 + bX2 = c], [aX2

1 ± bX2
2 = c] etc. of which the first three are straight lines

and the last one is a conic section) of <2 will also be 0 if F (x1, x2) is continuous.

Just as in the univariate case, for a smooth handle on the continuous random vectors,
here also it will be much more convenient if we can cook up a notion of probability density
analogous to joint p.m.f. of §5.1. Taking a lead from the univariate case, where the p.d.f.
was interpreted as the limit of the probability per unit length, as the length goes to 0; here
let us study what happens to the limit of the probability per unit area (in <2) as the area
goes to 0. The probability content of a rectangle around a point (x1, x2) ∈ <2 of area dx1dx2

is given in (8). Diving this probability by the area of the rectangle and letting the area go
to 0 we find that

lim
dx1 → 0
dx2 → 0

P [{x1 < X1 ≤ x1 + dx1} ∩ {x2 < X2 ≤ x2 + dx2}]
dx1dx2

= lim
dx2→0

1

dx2

lim
dx1→0

F (x1 + dx1, x2 + dx2)− F (x1, x2 + dx2)

dx1

− lim
dx2→0

1

dx2

lim
dx1→0

F (x1 + dx1, x2)− F (x1, x2)

dx1

= lim
dx2→0

1

dx2

∂

∂x1

F (x1, x2 + dx2)− lim
dx2→0

1

dx2

∂

∂x1

F (x1, x2)

= lim
dx2→0

∂
∂x1
F (x1, x2 + dx2)− ∂

∂x1
F (x1, x2)

dx2

=
∂

∂x2

∂

∂x1

F (x1, x2).

Pairing the first term with the third and the second with the fourth of the r.h.s. of (8),
and then letting dx2 go to 0 first and then dx1, and following exactly the same argument as
above we again get

lim
dx1 → 0
dx2 → 0

P [{x1 < X1 ≤ x1 + dx1} ∩ {x2 < X2 ≤ x2 + dx2}]
dx1dx2

=
∂

∂x1

∂

∂x2

F (x1, x2).
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Thus if the repeated partial derivatives of F (x1, x2) exist, then the quantity f(x1, x2) =
∂2

∂x1∂x2
F (x1, x2) = ∂2

∂x2∂x1
F (x1, x2) may be interpreted as the joint probability density

function of (X1, X2) in the sense that for dx1, dx2 → 0

P [{x1 < X1 ≤ x1 + dx1} ∩ {x2 < X2 ≤ x2 + dx2}] ≈ f(x1, x2)dx1dx2. (9)

With the above interpretation we formally define the joint p.d.f. of a bivariate random
vector X as follows.

Definition 19: A function f : <2 → < is called a joint p.d.f. if

a. ∀(x1, x2) ∈ <2, f(x1, x2) ≥ 0, and

b.
∫∞
−∞

∫∞
−∞ f(x1, x2)dx1dx2 = 1

For an arbitrary subset A ⊆ <2 of the plane, P [(X1, X2) ∈ A] may be found by first
dividing A into small rectangles of area dx1dx2, approximating the probability content of
such a rectangle around a point (x1, x2) ∈ A by f(x1, x2)dx1dx2, then adding the probabilities
of such rectangles for getting an approximate value of P [(X1, X2) ∈ A] and finally the exact
value is obtained by letting dx1, dx2 → 0. This process yields nothing but the double integral
of f(·, ·) on A and thus for A ⊆ <2,

P [(X1, X2) ∈ A] =
∫
A

∫
f(x1, x2)dx1dx2.

Before working with some examples, we first define all the other concepts associated with
the continuous random vectors. This is because the basic ideas of all these concepts have
already been introduced in §5.1 in the context of discrete random vectors, where the emphasis
was lay-ed on understanding the concepts rather than the technicalities and thus the notions
were introduced using numerical examples. Here the corresponding concepts are exactly the
same as in the discrete case (and thus the reader is expected to be already aware of what
they really mean) except that their technical definitions differ (in terms p.d.f.’s in place of
p.m.f.’s and thus replacing the summations by the integrals - exactly as in the univariate
case). Since it is just a matter of technicality (of concepts already introduced) rather than
introduction of new entities altogether, I prefer to define them first and defer working out a
few examples till we get the holistic view.

Thus let us first define the marginal distributions in terms of the marginal c.d.f.’s
and marginal p.d.f.’s. For i = 1, 2, the marginal c.d.f. and p.d.f. of Xi shall be denoted
by Fi(·) and fi(·) respectively.

F1(x1) = P (X1 ≤ x1) = P (X1 ≤ x1, X2 <∞) = lim
x2→∞

F (x1, x2) = F (x1,∞).

F2(x2) = P (X2 ≤ x2) = P (X1 <∞, X2 ≤ x2) = lim
x1→∞

F (x1, x2) = F (∞, x2).

Alternatively,

F1(x1) = P (X1 ≤ x1) = P (X1 ≤ x1, X2 <∞) =
∫ x1

−∞

∫ ∞
−∞

f(t, x2)dx2dt,
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and therefore

f1(x1) =
d

dx1

F1(x1) =
d

dx1

∫ x1

−∞

∫ ∞
−∞

f(t, x2)dx2dt =
∫ ∞
−∞

f(x1, x2)dx2.

Similarly

f2(x2) =
∫ ∞
−∞

f(x1, x2)dx1.

Unlike the discrete case, defining conditional distributions of X2|X1 = x1 (X1|X2 = x2)
here is a little tricky task as P [X1 = x1] = 0 (P [X2 = x2] = 0). However the conditional
p.d.f. of X2|X1 = x1 (X1|X2 = x2) may be defined with the help of the limiting arguments
as follows. Let F2|1(x2|x1) denote the conditional c.d.f. of X2|X1 = x1. Then

F2|1(x2|x1)

= lim
dx1→0

P (X2 ≤ x2|x1 < X1 ≤ x1 + dx1)

= lim
dx1→0

∫ x2
−∞

∫ x1+dx1
x1

f(s, t)dsdt∫∞
−∞

∫ x1+dx1
x1

f(s, t)dsdt

= lim
dx1→0

1
dx1

∫ x2
−∞

∫ x1+dx1
x1

f(s, t)dsdt
1
dx1

∫ x1+dx1
x1

f1(s)ds

=
1

f1(x1)

∫ x2

−∞
f(x1, t)dt

and therefore the conditional p.d.f. f2|1(x2|x1) of X2|X1 = x1 is given by

d

dx2

F2|1(x2|x1) =
1

f1(x1)

d

dx2

∫ x2

−∞
f(x1, t)dt =

f(x1, x2)

f1(x1)

Since f1(x1) appears in the denominator and there is no guarantee that f1(x1) > 0, a little bit
of additional caution needs to be exercised in defining the conditional densities X2|X1 = x1

and X1|X2 = x2, which are as follows. Define

f2|1(x2|x1) =

{
f(x1,x2)
f1(x1)

if 0 < f1(x1) <∞
0 otherwise

and f1|2(x1|x2) =

{
f(x1,x2)
f2(x2)

if 0 < f2(x2) <∞
0 otherwise

X1 and X2 are said to be independent if their marginal densities coincide with the respective
conditional densities i.e.

f1(x1) = f1|2(x1|x2) ∀(x1, x2) ∈ <2 or f2(x2) = f2|1(x2|x1) ∀(x1, x2) ∈ <2

As has already been discussed in detail in the discrete case (albeit w.r.t. p.m.f.’s) this is
equivalent to the condition that

f(x1, x2) = f1(x1)f2(x2).
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Covariance, correlation coefficient and the two regression functions are defined exactly as
in §3.5.1, except that the required Expectations are now found by integrating w.r.t. the
appropriate density functions instead of summing as before. Thus

Cov(X1, X2)

= E[(X1 − E[X1])(X2 − E[X2])]

=
∫ ∞
−∞

∫ ∞
−∞

(
x1 −

∫ ∞
−∞

tf1(t)dt
)(

x2 −
∫ ∞
−∞

tf2(t)dt
)
f(x1, x2)dx1dx2

=
∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, x2)dx1dx2 −
∫ ∞
−∞

x1f1(x1)dx1

∫ ∞
−∞

x2f2(x2)dx2

E[X2|X1 = x1], the regression of X2 on X1 is given by

E[X2|X1 = x1] =
∫ ∞
−∞

x2f2|1(x2|x1)dx2

and similarly the regression of X1 on X2, E[X1|X2 = x2], is given by

E[X1|X2 = x2] =
∫ ∞
−∞

x1f1|2(x1|x2)dx1.

Example 3.3 (Continued): Consider the dart throwing example where the dart is “equally
likely” to land anywhere on a circular dartboard of radius r. The notion of “equally likely”
was quantified in §3 by saying that the probability of landing in any region is proportional
to the area of the region. While that approach was alright, a more crisp way of defining
this notion of “equally likely” in the context of such a continuous bivariate random vector
would be to say that the joint distribution of the random vector (X, Y ), where X and Y
respectively denote the abscissa and ordinate of the point where the dirt has landed w.r.t.
a pair of orthogonal axes with the center of the dartboard as the origin, is uniform over its
natural domain.

A distribution over a domain is called uniform, if the density is constant over that do-
main and 0 elsewhere. Here the domain is given by {(x, y) : x2 + y2 ≤ r2}. If the joint
density f(x, y) is a constant c over this domain, the value of the constant needs to be
such that c

∫
{(x,y):x2+y2≤r2}

∫
dxdy = 1 according to requirement b of Definition 19. But

c
∫
{(x,y):x2+y2≤r2}

∫
dxdy simply represents the volume of a right circular cylinder of height c

with base {(x, y) : x2 + y2 ≤ r2}, which is same as πr2c, and thus c has to be 1
πr2

. Thus the
joint p.d.f. of (X, Y ) is given by

f(x, y) =

{
1
πr2

if x2 + y2 ≤ r2

0 otherwise

Let fX(x) denote the marginal p.d.f. of X. Then fX(x) will take positive values only for
−r ≤ x ≤ r which is given by

fX(x) =
∫ ∞
−∞

f(x, y)dy =
1

πr2

∫ √r2−x2

−
√
r2−x2

dy =
2

πr2

√
r2 − x2.
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The last but one equality follows from the fact that, for a fixed −r ≤ x ≤ r, f(x, y) is
the constant 1

πr2
only for −

√
r2 − x2 ≤ y <

√
r2 − x2 and 0 otherwise. To check that

fX(x) =

{
2
πr2

√
r2 − x2 if − r ≤ x ≤ r

0 otherwise
is a legitimate p.d.f. first note that it is non-

negative and ∫ ∞
−∞

fX(x)dx

=
2

πr2

∫ r

−r

√
r2 − x2dx

=
2

π

∫ π/2

−π/2
cos2 θdθ (by substituting x = r sin θ)

=
1

π

∫ π/2

−π/2
(cos 2θ + 1)dθ

=
1

π

(
1

2
sin 2θ|θ=π/2θ=−π/2 + θ|θ=π/2θ=−π/2

)
=

1

π

{
1

2
(sinπ − sin(−π)) +

(
π

2
+
π

2

)}
= 1

By symmetry the marginal p.d.f. of Y is given by fY (y) =

{
2
πr2

√
r2 − y2 if − r ≤ y ≤ r

0 otherwise
and is plotted below for r = 1.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Marginal p.d.f. of Y

y

f Y(
y)

For a fixed −r ≤ x ≤ r, fY |X(y|x), the conditional p.d.f. of Y |X = x is given by

fY |X(y|x) =

{
1

2
√
r2−x2 if −

√
r2 − x2 ≤ y ≤

√
r2 − x2

0 otherwise

Note that in fY |X(y|x), x is considered to be fixed and it is to be viewed as a function of y
as it depicts the distribution of Y for a fixed X = x. Here it is a constant over the range

−
√
r2 − x2 ≤ y ≤

√
r2 − x2 (and the constant is such that

∫√r2−x2

−
√
r2−x2 fY |X(y|x)dy = 1) and

thus as explained above, Y |X = x is Uniform over the domain [−
√
r2 − x2,

√
r2 − x2]. By

symmetry it is easy to see that X|Y = y is Uniform over the domain [−
√
r2 − y2,

√
r2 − y2].
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Since both fX(x) and fY (y) are symmetric about 0, E[X] = E[Y ] = 0. Furthermore

E[XY ]

=
∫ ∞
−∞

∫ ∞
−∞

xyf(x, y)dxdy

=
1

πr2

∫ r

−r

y
∫ √r2−y2

−
√
r2−y2

xdx

 dy
= 0

Thus Cov(X, Y ) = ρX,Y = 0. However note that f(x, y) 6= fX(x)fY (y) and thus serving
another example where X and Y are not independent, but still having 0 correlation.

Since Y |X = x is Uniform over [−
√
r2 − x2,

√
r2 − x2], E[Y |X = x] = 0 and so is E[X|Y =

y] by symmetry. Thus here the regression of both Y on X as well as X on Y are both
constants identically equaling 0. The intuitive reason behind this is as follows. The only
job the knowledge of X = x does for Y is fixing its range, because ∀x ∈ [−r, r] Y |X = x is
Uniform. But since this range is symmetric about 0, the mean of the conditional distribution
remains unchanged for changing values of X = x. Actually in applications this is typically
what is expected in case of 0 correlation. When the correlation coefficient is 0, and there is no
non-linearity among the association between two variables, one would expect the regression
line to be flat. 5

3.6 Generating Functions

So far the distributions of random variables have been expressed in a straight forward manner
through p.m.f./p.d.f. or c.d.f.. While for visualizing a distribution and moment computations
the p.m.f./p.d.f., and for probability and quantile calculations the c.d.f., are indispensable,
there are alternative ways of expressing a distribution. These are like capsules which pack-
ages the distribution in a unique manner that is used for some specialized purposes. The
original distribution in terms of its p.m.f./p.d.f. can be recovered back from these capsules
if one desires so, but the main purpose of these capsules are not depicting a distribution
in an alternative form (though this can be one of the interpretations of these capsules viz.
a signature of a distribution), but using them for some special purposes like probability
computation for a sum of random variables, moment calculation, proving theoretical results
using the capsule as a unique signature of a distribution etc.. We shall discuss three such
different packaging of distributions, each having its own unique usages.

3.6.1 Probability Generating Functions

Consider a discrete non-negative integer valued random variable X with X = {0, 1, 2, . . .}
and p.m.f. pn = P [X = n] for n = 0, 1, 2, . . ..

Definition 3.20: The function g(t) =
∑∞
n=0 pnt

n defined for t ∈ [−1, 1] is called the prob-
ability generating function, or p.g.f. for short, of the non-negative integer valued random
variable X.
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First note that since {pn}∞n=0 is a p.m.f., the p.g.f. g(t) defined above indeed exists ∀t ∈
[−1, 1], as for any t ∈ [−1, 1] |g(t)| ≤ ∑∞

n=0 pn|t|n ≤
∑∞
n=0 pn = 1. Next observe that by

the law of unconscious statistician, g(t) = E
[
tX
]
. The p.g.f. g(t) actually packages the

p.m.f. {pn}∞n=0 in a capsule from which the original p.m.f. can be recovered in the following
manner:

g(0) = p0 + p10
1 + p20

2 + · · · = p0

g′(0) = d
dt
g(t)

∣∣∣
t=0

= p1 + 2p20
1 + 3p30

2 + · · · = p1

g′′(0) = d2

dt2
g(t)

∣∣∣
t=0

= 2p2 + 3.2.p30
1 + 4.3.p40

2 + · · · = 2p2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
g(n)(0) = dn

dtn
g(t)

∣∣∣
t=0

= n(n− 1) . . . 2.1.pn + (n+ 1)n . . . 2pn+10
1 + (n+ 2)(n+ 1) . . . 3pn+20

2

+(n+ 3)(n+ 2) . . . 4pn+30
3 + · · · = n!pn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Thus given the p.g.f. g(t) of a non-negative integer valued random variable X, the p.m.f.
pn or P [X = n] can be easily recovered as pn = 1

n!
g(n)(0). But that’s not the only thing, the

moments of the random variable can also be easily computed using the p.g.f. as follows:

g(1) = p0 + p1 + p2 + · · · = ∑∞
n=0 pn = 1

g′(1) = d
dt
g(t)

∣∣∣
t=1

= 0p0 + p1 + 2p2 + 3p3 + · · · = ∑∞
n=0 npn = E [X]

g′′(1) = d2

dt2
g(t)

∣∣∣
t=1

= 0.(0− 1).p0 + 1.(1− 1).p1 + 2.(2− 1).p2 + 3.(3− 1).p3 + · · ·
=
∑∞
n=0 n(n− 1)pn = E [X(X − 1)]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
g(n)(1) = dn

dtn
g(t)

∣∣∣
t=1

= 0(0− 1) . . .
(
0− n− 1

)
p0 + · · ·+ i(i− 1) . . . (i− i) . . .

(
i− n− 1

)
pi

+ · · ·+ (n− 1)
(
n− 1− 1

)
. . .
(
n− 1− n− 1

)
pn−1 + n(n− 1) . . .

(
n− n− 2

) (
n− n− 1

)
pn

+(n+ 1)
(
n+ 1− 1

)
. . .
(
n+ 1− n− 1

)
pn+1 + (n+ 2)

(
n+ 2− 1

)
. . .
(
n+ 2− n− 1

)
pn+2

+(n+ 3)
(
n+ 3− 1

)
. . .
(
n+ 3− n− 1

)
pn+2 + · · ·

=
∑∞
k=0 k(k − 1) . . .

(
k − n− 1

)
pn = E

[
X(X − 1) . . .

(
X − n− 1

)]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Thus we see that given the p.g.f. g(t) of a (non-negative integer valued) random variable

X, E
[
X(X − 1) . . .

(
X − n− 1

)]
is easily found as g(n)(1). Thus for instance, as seen above,

E[X] = g′(1). Since g′′(1) = E [X(X − 1)], E [X2] = g′′(1) + g′(1) so that V [X] = E [X2]−
(E[X])2 = g′′(1) + g′(1) − (g′(1))2. Hence given the p.g.f. it is fairly convenient to extract
the raw and central moments of the distribution.

Example 3.4 (Continued): Consider the r.v. X denoting the number of Tails till the first
Head appears, in the experiment where a coin is tossed till a Head shows up, introduced
in page 5. Recall that this X has p.m.f. p(x) = qxp for x = 0, 1, 2, . . .. The first two
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moments of X were also derived in pp.10-11 using tricky infinite sum calculation. However
all these information can be capsuled in its p.g.f. in one go, so that one can then later extract
whatever one needs about this r.v. - be it its p.m.f. or moments - from this capsule simply
by differentiation. The p.g.f. of X is given by

g(t) = E
[
tX
]

=
∞∑
x=0

txp(x) =
∞∑
x=0

txqxp = p
∞∑
x=0

(tq)x =
p

1− qt

so that g′(t) = pq
(1−qt)2 , g′′(t) = 2pq2

(1−qt)3 , g(3)(t) = 3!pq3

(1−qt)4 etc. g(n)(t) = n!pqn

(1−qt)n+1 . Thus P [X = n]

is easily seen to be g(n)(0)/n! = qnp as it should be. E
[
X(X − 1) . . .

(
X − n− 1

)]
is given

by g(n)(1) = n!
(
q
p

)n
so that E[X] = q

p
and V [X] = g′′(1) + g′(1)− (g′(1))2 = 2 q

2

p2
+ q

p
− q2

p2
=

q2

p2
+ q

p
= q2+pq

p2
= q(q+p)

p2
= q

p2
as were also found by direct computation in page 11. 5

Example 3.22: So far we have mainly dealt with well behaved random variables with finite
moments. As an exception, consider a random variable X which takes the value n with
probability 1

n(n+1)
for n = 1, 2, . . .. Let us first check that p(n) = 1

n(n+1)
for n = 1, 2, . . . is a

legitimate p.m.f.. For this, first note that for n = 1, 2, . . . 1
n(n+1)

> 0. Thus the only other

thing that remains to be shown is that
∑∞
n=1

1
n(n+1)

= 1 which is proved as follows:

∞∑
n=1

1

n(n+ 1)

= lim
N→∞

N∑
n=1

(
1

n
− 1

n+ 1

)

= lim
N→∞

{(
1− 1

2

)
+
(

1

2
− 1

3

)
+ · · ·+

(
1

N − 1
− 1

N

)
+
(

1

N
− 1

N + 1

)}
= lim

N→∞

{
1− 1

N + 1

}
= 1

Note that E[X] does not exist owing to the fact that

∞∑
n=1

np(n) =
∞∑
n=1

n

n(n+ 1)
=
∞∑
n=1

1

n+ 1
=∞.

Now the p.g.f. of X is given by

g(t) =
∞∑
n=1

tn

n(n+ 1)
=
∞∑
n=1

(
tn

n
− tn

n+ 1

)
=
∞∑
n=1

tn

n
−
∞∑
n=1

tn

n+ 1
.

Now

∞∑
n=0

tn =
1

1− t
⇒
∫ ∞∑

n=0

tndt =
∞∑
n=0

∫
tndt =

∞∑
n=0

tn+1

n+ 1
=
∞∑
n=1

tn

n
=
∫ 1

1− t
dt+c = − log(1−t)+c
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for some constant c. Since for t = 0 both
∑∞
n=1

tn

n
and − log(1− t) equals 0, c = 0, yielding∑∞

n=1
tn

n
= − log(1− t). Similarly

∞∑
n=1

tn =
t

1− t
⇒

∫ ∞∑
n=1

tndt =
∞∑
n=1

∫
tndt =

∞∑
n=1

tn+1

n+ 1
=
∫ t

1− t
dt+ c =

∫ {
1

1− t
− 1

}
dt+ c

= − log(1− t)− t+ c

for some constant c. Since for t = 0 both
∑∞
n=1

tn+1

n+1
and − log(1 − t) − t equals 0, c = 0,

yielding
∑∞
n=1

tn+1

n+1
= − log(1− t)− t and thus

∑∞
n=1

tn

n+1
= 1

t

∑∞
n=1

tn+1

n+1
= −1

t
log(1− t)− 1.

Therefore the p.g.f. of X is given by

g(t) =
∞∑
n=1

tn

n
−
∞∑
n=1

tn

n+ 1
= − log(1− t) +

1

t
log(1− t) + 1 = 1 +

1− t
t

log(1− t).

In what follows, limiting arguments will be used to evaluate g(0), g′(1) etc. and Lhospital’s
Rule10 will be used repeatedly for evaluating these limits. As a first check, by Lhospital’s
Rule, limt→0

log(1−t)
t

= limt→0
−1/(1−t)

1
= −1 (since both limt→0 log(1− t) and limt→0 t equals

0 and the derivatives of log(1− t) and t equals − 1
1−t and 1 respectively11), and thus g(0) =

1 + (1− 0)(−1) = 0 = P [X = 0]. Simple substitution of t = 1 yields g(1) = 1.

g′(t)

=
d

dt

{
1 +

1

t
(1− t) log(1− t)

}
= − 1

t2
(1− t) log(1− t)− 1

t
log(1− t)− 1

t

= −1

t

[
1 + log(1− t)

{
1 +

1− t
t

}]
= − 1

t2
[t+ log(1− t)]

g′(0) = lim
t→0

{
− 1

t2
[t+ log(1− t)]

}
= − lim

t→0

1− 1
1−t

2t
= − lim

t→0

−1/(1− t)2

2
=

1

2
= P [X = 1]

Similarly repeatedly using Lhospital’s rule and tedious algebra it can be shown that g′′(0) =
2

2.3
= 2P [X = 2], g(3)(0) = 3!

3.4
= 3!P [X = 3] etc.. Now what about the moments? We have

10Lhospital’s Rule states that if

i. f(x) and g(x) are real valued functions with continuous derivatives with g′(x) 6= 0

ii. both limx→a f(x) and limx→a g(x) are 0, and

iii. limx→a
f ′(x)
g′(x) = L

then limx→a
f(x)
g(x) = L.

11From now on checking the conditions for the applicability of Lhospital’s Rule will be left to the reader
and will not be explicitly worked out as in this case.
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seen above that E[X] does not exist. Thus if one attempts to evaluate limt→1 g
′(t) using the

expression for g′(t) derived above, it is easy to check that this limit does not exist confirming
the same result of non-existence of E[X] . 5

Above we saw how to use the p.g.f. for obtaining the p.m.f. and moments of (non-negative
integer valued) random variables. We shall end this sub-section after illustrating its use in
another domain of application, namely in the treatment of sum of independent and identically
distributed (called i.i.d. for short) random variables, which crops up every now and then in
statistical applications. Thus suppose X1, . . . , Xn be i.i.d. with p.g.f. g(t). The question is
then what is the expression of gn(t), the p.g.f. of Sn = X1 + · · ·+Xn in terms of g(t)? This
can be found as follows:

gn(t) = E
[
tSn
]

= E
[
tX1+···+Xn

]
= E

[
tX1

]
. . . E

[
tXn

]
= g(t) . . . g(t)︸ ︷︷ ︸

n-times

= [g(t)]n

The third equality follows from the independence of X1, . . . , Xn and the next equality follows
from the fact that all the Xi’s have identical distribution and hence the same p.g.f. g(t). The
power of this result can be well appreciated from the remaining examples in this sub-section.
However since these examples require the following theorem, which is useful in its own right,
we shall present this theorem, called Negative Binomial Theorem first. However even
before that we first need to introduce the notation of negative binomial coefficients.

For a positive integer n, the binomial coefficient

(
n
k

)
is given by

(
n
k

)
= n!

(n−k)!k! =

1
k!
n.(n − 1) . . . (n − k + 1). Now for any real number a and non-negative integer k define(
a
k

)
as

(
a
k

)
= 1

k!
a(a − 1) . . . (a − k + 1). Thus for negative integer −n the negative

binomial coefficient is given by(
−n
k

)

=
1

k!
(−n)(−n− 1) . . . (−n− k + 1)

= (−1)k
1

k!
n.(n+ 1) . . . (n+ k − 1)

= (−1)k
(n+ k − 1).(n+ k − 2) . . . (n+ 1).n.(n− 1) . . . 1

k!(n− 1)!

= (−1)k
(
n+ k − 1

k

)

Negative Binomial Theorem: For |t| < 1 and positive integer n,

(1− t)−n =
∞∑
k=0

(
−n
k

)
(−1)ktk =

∞∑
k=0

(
n+ k − 1

k

)
tk.

Proof: With the last equality being same as that of the definition of the negative binomial

coefficient, we shall prove that (1 − t)−n =
∑∞
k=0

(
n+ k − 1

k

)
tk. We shall prove it by
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induction. For n = 1 it simply states that 1
1−t =

∑∞
k=0 t

k, which is nothing but the infinite
geometric series formula for |t| < 1. Now assume that the equality is true for some n ≥ 1.

(1− t)−(n+1)

=
1

n

d

dt
(1− t)−n

=
1

n

d

dt

∞∑
k=0

(
n+ k − 1

k

)
tk (by induction hypothesis)

=
1

n

∞∑
k=1

(n+ k − 1)!

k!(n− 1)!

d

dt
tk (interchange allowed for a power series)

=
∞∑
k=1

k

n

(n+ k − 1)!

k!(n− 1)!
tk−1

=
∞∑
k=1

(n+ k − 1)!

(k − 1)!n!
tk−1

=
∞∑
`=0

(n+ `)!

`!n!
t` (by substituting ` = k − 1)

=
∞∑
`=0

(
n+ 1 + `− 1

`

)
t` 5

Example 3.23: Suppose a student is taking 5 courses in a semester, with each course being
marked with an integer score between 0 and 100, and we are interested in finding the number
of ways in which the student can secure a total marks of 300 in these 5 courses in that given
semester. Although it is a combinatorics problem, none of the counting methods we have
learned in the previous chapter can come to our rescue for solving this problem. We shall
convert this to a probability problem instead from which we shall get this count.

For i = 1, 2, . . . , 5 let the marks scored in the i-th course be denoted by Xi. We make (the
very unrealistic) assumption (but it does not matter) that the student is equally likely to
score any marks between 0 to 100 in all the 5 courses i.e. ∀i = 1, 2, . . . , 5, P [Xi = j] = 1

101

∀j = 0, 1, . . . , 99, 100. We also further assume that the Xi’s are independent. Then the
total score the student gets is given by S = X1 + X2 + · · · + X5 and we are interested in
counting the number ways in which S = 300. Now the total number of possible 5-tuples in
the 5 courses that the student can score is given by 1015 and thus if we can first compute
P [S = 300], multiplying it by 1015 will give the number of ways in which the student can
score a total of 300. The probability distribution of S is determined by using its p.g.f..

Since P [Xi = j] = 1
101
∀j = 0, 1, . . . , 99, 100, the p.g.f. ofXi is given by 1

101
[1+t+· · ·+t100] =

1
101

1−t101
1−t by the geometric series formula, and thus the p.g.f. of S = X1 + X2 + · · · + X5 is

given by 1
1015

(1−t101)
5

(1−t)5 . Hence P [S = 300] can be found by figuring out the coefficient of t300

in the expansion of 1
1015

(1−t101)
5

(1−t)5 and thus the number of ways S = 300 is nothing but the
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coefficient of t300 in the expansion of
(1−t101)

5

(1−t)5 . Now

(1− t101)
5

(1− t)5
=

5∑
k=0

(
5
k

)
(−1)kt101k

∞∑
`=0

(
4 + `
`

)
t`

There are only 6 terms in the first (finite) summation viz. t0, t101, t202, t303, t404 and t505 and
of these the last three terms do not contribute to the coefficient of t300 in the final expansion,
as the second (infinite) sum only has non-negative powers of t in it. Thus in order to find
the coefficient of t300 in the final expansion, we just need to multiply the coefficients of t0,
t101 and t202 in the first sum with the respective coefficients of t300, t199 and t98 in the second
sum, and then add them up. This gives(

5
0

)(
304
300

)
−
(

5
1

)(
203
199

)
+

(
5
2

)(
102
98

)

=
1

24
[304× 303× 302× 301− 5× 203× 202× 201× 200 + 10× 102× 101× 100× 99]

= 47, 952, 376

ways of scoring a total of 300. 5

Example 3.24: This is a generalization of the above example in which an m-faced dice
with faces marked with integers 1, 2, . . . ,m is rolled n times and we are interested in the
distribution of the sum of the faces S. Assuming the dice is fair, and letting Xi denote the
outcome of the i-th roll, the p.g.f. of Xi is given by 1

m
[t+ t2 + · · · tm] = 1

m
t(1 − tm)(1 −

t)−1, so that the p.g.f. of the sum is given by 1
mn
tn(1 − tm)n(1 − t)−n. For a given k ∈

{n, n+ 1, . . . ,mn}, P [S = k] is given by the coefficient of tk in the expansion of 1
mn
tn(1 −

tm)n(1− t)−n, which is found as follows.

tn(1− tm)n(1− t)−n = tn
n∑
i=0

(
n
i

)
(−1)itm×i

∞∑
j=0

(
n+ j − 1

j

)
tj

Thus the coefficient of tk in this expression is given by

n∑
i=0

(−1)i
(
n
i

)(
k −m× i− 1
k − n−m× i

)
=

n∑
i=0

(−1)i
(
n
i

)(
k −m× i− 1

n− 1

)
.

As in the above example it is clear that all i’s from 0 to n are not going to contribute in the
above sum towards the coefficient of tk, and in particular, i should be such that n+m×i ≤ k.
However the expression above is theoretically correct i.e. there is no harm in writing the
sum for i = 0 to n, as for large i’s violating the condition i.e. for i’s such that n+m× i > k,

k −m× i− 1 < n− 1 and thus by the definition of binomial coefficients

(
k −m× i− 1

n− 1

)
for such i’s will be 0, rendering the expression correct.

A couple of numerical illustrations should make the the above formula clear. Suppose a reg-
ular 6-faced dice is thrown 10 times and we are interested in the probability of obtaining a sum
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of 30. The number of ways the sum can be 30 is given by
∑10
i=0(−1)i

(
10
i

)(
30− 6i− 1

9

)
.

30− 6i− 1 ≥ 9⇔ i ≤ 3 and thus for i ≥ 4

(
30− 6i− 1

9

)
= 0. Thus the coefficient of t30

is given by (
10
0

)(
29
9

)
−
(

10
1

)(
23
9

)
+

(
10
2

)(
17
9

)
−
(

10
3

)(
11
9

)

which after some arithmetic is found to be 2,930,455 so that the probability of the sum being
30 is given by 2, 930, 455/610 = 0.04846.

Now suppose again a regular 6-faced dice is thrown 5 times. Obviously the sum cannot
exceed 30 in this case. But what does the formula say about the probability of getting
the sum to be a number bigger than 30? Let’s find out for the simplest case, k = 31.
31− 6i− 1 ≥ 4⇔ i ≤ 4. Thus the coefficient of t31 is given by

4∑
i=0

(−1)i
(

5
i

)(
30− 6i

4

)

=

(
5
0

)(
30
4

)
−
(

5
1

)(
24
4

)
+

(
5
2

)(
18
4

)
−
(

5
3

)(
12
4

)
+

(
5
4

)(
6
4

)
= 27405− 53130 + 30600− 4950 + 75

= 0 5

Example 3.25: For i = 1, 2, . . . , n suppose Xi’s are i.i.d. with P [Xi = 1] = p and P [Xi =
0] = 1 − p = q (say). We are interested in figuring out the distribution of the sum S =∑n
i=1Xi. You can think of it as a generalization of Example 1 where we were concerned

with the distribution of the number of Heads in 3 tosses of a coin with P (H) = 0.6. Instead
of 3 tosses, now the coin is being tossed n times and instead of P (H) = 0.6 it is now an
arbitrary real number p ∈ [0, 1]. Code the result of the i-th toss as 1 if it results in a Head
and 0 otherwise. Then S simply represents the number of Heads in n tosses of this coin.
Among all different treatments of this problem of figuring out the distribution of S the one
with p.g.f. is at least algebraically the most straight forward one. The p.g.f. of Xi is given
by P [Xi = 0]t0 + P [Xi = 1]t = q + pt, as P [Xi = j] = 0 ∀j ≥ 2. Therefore the p.g.f. of

S is given by g(t) = (q + pt)n =
∑n
k=0

(
n
k

)
pkqn−ktk by the binomial theorem. Hence by

directly reading out the coefficient of tk in the binomial expansion of the p.g.f. of S it can be

found that P [S = k] =

(
n
k

)
pkqn−k ∀k = 0, 1, . . . , n. This is the famous Binomial random

variable, which is useful in modeling various natural phenomena, and will be discussed in
detail in the next chapter. For now let us just compute its mean and variance using the
p.g.f. approach.

g′(t) =
d

dt
(q + pt)n = np(q + pt)n−1 and g′′(t) =

d

dt
np(q + pt)n−1 = n(n− 1)p2(q + pt)n−2
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Therefore its mean is given by E[X] = g′(1) = np (since p+ q = 1) and its variance is given
by V [X] = g′′(1) + g′(1)− (g′(1))2 = n(n− 1)p2 + np− n2p2 = np− np2 = np(1− p) = npq.
5

3.6.2 Moment Generating Functions

During our discussion in the previous section on p.g.f., apart from parenthetically mentioning
a few times, the fact that p.g.f. is only defined for non-negative integer valued random
variables, was not overly emphasized. The time has now come to draw attention to this fact.
While the quantity tX is a well-defined real number ∀t ∈ [−1, 1] for a non-negative integer
valued random variable, for an arbitrary random variable X, tX may not be a real number
and even may be undefined. For instance with X taking negative values, tX is an imaginary
number for t < 0 and is undefined at t = 0 (the criticality of being able to define a generating
function at 0 should be clear to the reader from the foregoing discussion on p.g.f.). This
gives rise to the need of defining a generating function for an arbitrary random variable X
in a slightly different manner than p.g.f..

For an integer valued random variable, since its range of possible values are known before
hand, it makes sense to seek for a function, from which its p.m.f. can be retrieved back.
For an arbitrary random variable, this property of being able to directly retrieve the p.m.f.
or the p.d.f., as the case may be, from a generating function, is too much to expect. Other
than capsuling the p.m.f., two other major uses of p.g.f. are easy moment derivation and
handling of i.i.d. random variables. Thus while attempting to define a generating function
for an arbitrary random variable, these two features are desired while keeping the quantity
a well-defined real number at the same time. tX may be ill-defined for an arbitrary random
variable for t < 0, but similar properties can be retained if one just forces t to remain
positive. This is accomplished if one considers etX instead.

Definition 3.21: The function M(t) = E
[
etX

]
(provided that the expectation exists) is

called the moment generating function, or m.g.f. for short, of the random variable X.

Note that for a non-negative integer valued random variable X, if its p.g.f. is given by
g(s) = E

[
sX
]
, its m.g.f. M(t) is easily obtained by substituting s = et in its p.g.f. i.e.

M(t) = g(et). Now the question that naturally arises is, “why is it called moment generating
function?” In order to answer the question observe that

M(t) = E
[
etX

]
= E

[
1 + tX +

(tx)2

2!
+

(tX)3

3!
+ · · ·

]
= 1+tE[X]+

1

2!
t2E

[
X2
]
+

1

3!
t3E

[
X3
]
+· · ·

so that

M(0) = 1,M ′(0) = E[X],M ′′(0) = E
[
X2
]
,M (3)(0) = E

[
X3
]
, . . . ,M (n)(0) = E [Xn] , . . .

Thus the moments of a random variable, if they exist, can be easily obtained by differentiating
its m.g.f. and hence the name moment generating function. The m.g.f. does not exist if
the moments do not exist. In order to see this let us revisit Example 22 introduced in the
previous subsection.
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Example 3.22 (Continued): We have already seen that the random variable X with its

p.m.f. p(n) = 1
n(n+1)

for n = 1, 2, . . . does not have any finite moment of any order. Also its

p.g.f. is derived as g(s) = 1+{(1−s)/s} log(1−s) for s ∈ [−1, 1]. Now as mentioned above,
the m.g.f. M(t) of a non-negative integer valued random variable can be easily obtained by
substituting s = et. But for t ≥ 0 log (1− et) is un-defined and thus the m.g.f. of this r.v.
does not exist. 5

Example 3.4 (Continued): The p.g.f. of the random variable X with p.m.f. p(x) = qxp for
x = 0, 1, 2, . . . was derived to be g(s) = p

1−qs in the previous subsection. Thus by substituting

s = et in this p.g.f. its m.g.f. is found to be M(t) = p
1−qet . As an illustration for deriving

moments using the m.g.f. first note that M(0) = 1,

M ′(0) =
d

dt
M(t)

∣∣∣∣∣
t=0

=
d

dt

p

1− qet

∣∣∣∣∣
t=0

=
pqet

(1− qet)2

∣∣∣∣∣
t=0

=
pq

p2
=
q

p
= E[X],

M ′′(0) =
d2

dt2
M(t)

∣∣∣∣∣
t=0

=
d

dt

pqet

(1− qet)2

∣∣∣∣∣
t=0

=
(1− qet) pqet + 2pq2e2t

(1− qet)3

∣∣∣∣∣
t=0

=
q

p
+ 2

q2

p2

so that

V [X] = E
[
X2
]
− (E[X])2 = M ′′(0)− (M ′(0))

2
=
q

p
+ 2

q2

p2
− q2

p2
=

q

p2
5

As mentioned in the beginning of this subsection, the main reason for which one has to go
beyond p.g.f. and define m.g.f. is its applicability being not limited to non-negative integer
valued random variables only. Whenever the appropriate moments exist, the m.g.f. can be
computed and utilized for moment computation of any random variable. Thus in the next
example we illustrate the usage of m.g.f. for a continuous random variable.

Example 3.9 (Continued): In this example, we had derived the c.d.f. of how long a light-
bulb might last, based on some physical postulates. It was derived that the c.d.f. F (x) of
the random variable T denoting the number of hours that a light-bulb will last is given by

F (x) =

{
0 if x ≤ 0
1− e−λx if x > 0

for some parameter λ giving the rate of failure. Now from this

it is easy to derive the p.d.f. of T which is given by f(x) = d
dx
F (x) =

{
λe−λx if x > 0
0 ifx ≤ 0

.

Obviously one can compute the moments directly from definition using this p.d.f.. That is
for example,

E[X]

=
∫ ∞
−∞

xf(x)dx

= λ
∫ ∞
0

xe−λxdx

=
1

λ

∫ ∞
0

ue−udu (by substituting u = λx)

=
1

λ

[
−ue−u

∣∣∣∞
u=0

+
∫ ∞
0

e−udu
]

(after integrating by parts)
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=
1

λ
(as lim

u→0
ue−u = 0, lim

u→∞
ue−u = 0 and

∫ ∞
0

e−udu = −e−u
∣∣∣∞
u=0

= 1),

and

E[X2]

=
∫ ∞
−∞

x2f(x)dx

= λ
∫ ∞
0

x2e−λxdx

=
1

λ2

∫ ∞
0

u2e−udu (by substituting u = λx)

=
1

λ2

[
−u2e−u

∣∣∣∞
u=0

+ 2
∫ ∞
0

ue−udu
]

(after integrating by parts)

=
2

λ2
(as lim

u→0
u2e−u = 0, lim

u→∞
u2e−u = 0 and we have just shown that

∫ ∞
0

ue−udu = 1),

so that V [X] = E [X2] − (E[X])2 = 2
λ2 − 1

λ2 = 1
λ2 . However for each moment instead of

trying to evaluate the integrals again and again, it is much more convenient to perform
an integration once and for all, package it in a capsule called m.g.f. and then extract the
moments from it as and when required by simple differentiation. Thus we first calculate the
m.g.f. of X as

M(t)

= E
[
etX

]
=

∫ ∞
−∞

etxf(x)dx (by the law of unconscious statistician)

= λ
∫ ∞
0

e−(λ−t)xdx

=
λ

λ− t

∫ ∞
0

e−udu (by substituting u = (λ− t)x)

=
λ

λ− t
.

Next E[X] and E [X2] are obtained as

E[X] = M ′(0) =
d

dt
M(t)

∣∣∣∣∣
t=0

=
d

dt

λ

λ− t

∣∣∣∣∣
t=0

=
λ

(λ− t)2

∣∣∣∣∣
t=0

=
1

λ
,

E
[
X2
]

= M ′′(0) =
d2

dt2
M(t)

∣∣∣∣∣
t=0

=
d

dt

λ

(λ− t)2

∣∣∣∣∣
t=0

=
2λ

(λ− t)3

∣∣∣∣∣
t=0

=
2

λ2

so that again V [X] = E [X2]− (E[X])2 = M ′′(0)− (M ′(0))2 = 2
λ2 − 1

λ2 = 1
λ2 . 5

Ease of moment calculation is not the only usage of m.g.f.. One of its major utilization lies
in the characterization of a distribution. By this it is meant that each distribution’s m.g.f.
is its unique signature, which turns out to be extremely useful in proving certain theoretical
results. Note that p.g.f. also possess this uniqueness property proof of which lies in the way
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one can retrieve the p.m.f. from the p.g.f.. The proof of the uniqueness property of the m.g.f.
is beyond the scope of these lecture notes and thus we simply state the theorem below for
future reference without attempting to prove it.

Uniqueness Property of m.g.f.: If M1(t) and M2(t) respectively are the m.g.f.’s of two
distribution functions F1(x) and F2(x) such that M1(t) ≡M2(t) ∀t ∈ <, then F1(x) ≡ F2(x)
∀x ∈ <.

Thus if we can recognize the m.g.f. of a certain random variable to belong to a particular
family of distributions, that can be used to ascertain the distribution of that random variable.
Before providing an example illustrating this usage of m.g.f., it would be useful to examine,
like p.g.f., how m.g.f. also can be used to handle the sum of i.i.d. random variables. Thus
if X1, X2, . . . , Xn are i.i.d. with each having m.g.f. M(t), the m.g.f. of their sum S =
X1 +X2 + · · ·+Xn is given by

MS(t) = E
[
etS
]

= E
[
et(X1+···+Xn)

]
= E

[
etX1

]
. . . E

[
etXn

]
= M(t) . . .M(t)︸ ︷︷ ︸

n−times

= [M(t)]n

The third equality follows from the independence and the next equality follows from the
identical distribution assumption of the Xi’s. We finish this sub-section after providing a
couple of examples illustrating these last two properties.

Example 3.26: Consider a r.v. X having p.d.f. f(x) =

{
λn

(n−1)!
xn−1e−λx if x ≥ 0

0 if x < 0
for

some positive integer n and λ > 0. That this is a legitimate p.d.f. can be proven by
repeatedly integrating by parts as follows:∫ ∞
0

xn−1e−λxdx

=
1

λn

∫ ∞
0

un−1e−udu (by substituting u = λx)

=
1

λn

[
−un−1e−u

∣∣∣∞
u=0

+ (n− 1)
∫ ∞
0

un−2e−udu
]

(after integrating by parts)

=
1

λn

[
−un−2e−u

∣∣∣∞
u=0

+ (n− 1)(n− 2)
∫ ∞
0

un−3e−udu
]

(since lim
u→0

un−1e−u = lim
u→∞

un−1e−u = 0

and then again integrating
∫ ∞
0

un−2e−udu by parts)

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
=

1

λn

[
e−u

∣∣∣∞
u=0

+ (n− 1)(n− 2) . . . 1
∫ ∞
0

e−udu
]

=
(n− 1)!

λn

so that
∫∞
0 f(x)dx = 1. Now in order to find its m.g.f. we again use this integral result just

proven.

M(t)

= E
[
etX

]
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=
λn

(n− 1)!

∫ ∞
0

etxxn−1e−λxdx (by the law of unconscious statistician)

=
λn

(n− 1)!

∫ ∞
0

xn−1e−(λ−t)xdx

=
λn

(n− 1)!(λ− t)n
∫ ∞
0

un−1e−udu (by substituting u = (λ− t)x)

=
λn(n− 1)!

(n− 1)!(λ− t)n
(as we have just proven that

∫ ∞
0

un−1e−udu = (n− 1)!)

=

(
λ

λ− t

)n

Now let us get back to Example 9 (Continued). There we had shown that the random
variable T has m.g.f. λ

λ−t . Now consider n i.i.d. copies T1, . . . , Tn of T and their sum
S = T1 + · · ·+Tn. What is the p.d.f. of S? Since m.g.f. of the sum n i.i.d. random variables
is the m.g.f. of this random variable raised to the power n, it is clear that the m.g.f. of S

is
(

λ
λ−t

)n
which is same as that of X we started with. Thus by the Uniqueness property of

m.g.f., the p.d.f. of S (fS(s) say) must equal fS(s) =

{
λn

(n−1)!
sn−1e−λs if s ≥ 0

0 if s < 0
. 5

Example 3.27: Consider a discrete random variable X with p.m.f. p(x) = e−λ λ
x

x!
for x =

0, 1, 2, . . . for some parameter λ > 0. That this is a legitimate p.m.f. follows immediately from
the fact that eλ =

∑∞
x=0

λx

x!
. This random variable is said to follow a Poisson distribution

with parameter λ and is denoted by X ∼ Poisson(λ). (Like the Binomial r.v. of Example
25, this distribution, which is one of the most important discrete probability models, will be
studied in detail in the next chapter.) The m.g.f. of a Poisson(λ) random variable is given
by

M(t) = E
[
etX

]
= e−λ

∞∑
x=0

etx
λx

x!
= e−λ

∞∑
x=0

(λet)
x

x!
= e−λeλe

t

= exp
{
λ
(
et − 1

)}
.

Now consider n independent Poisson random variables with Xi ∼ Poisson(λi) for i =
1, 2, . . . , n. Note that Xi’s are independent but not identically distributed as we are al-
lowing the parameter of the distribution λi to change with i. We are interested in figuring
out the distribution of S = X1 + · · ·+Xn. As a motivating background in business applica-
tion, imagine you own n retail electronic stores in a city and the daily number of 25” color
television sets sold by the i-th store has a Poisson distribution (it fits fairly well empirically
as well as some theoretical argument can also be put forth in favor of this model) with
parameter λi, and you are interested in the distribution of the total number of 25” color
television sets sold by all these n stores in the city on a given day. The easiest way to figure
it out is by using the m.g.f. which is done as follows. M.g.f. of S is given by

MS(t)

= E
[
etS
]

= E
[
et(X1+···+Xn)

]
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= E
[
etX1

]
. . . E

[
etXn

]
(by independence of X1, . . . Xn)

= exp
{
λ1

(
et − 1

)}
. . . exp

{
λn
(
et − 1

)}
(since m.g.f. of Poisson(λi) is exp

{
λi
(
et − 1

)}
)

= exp
{

(λ1 + · · ·+ λn)
(
et − 1

)}
= exp

{
λ
(
et − 1

)}
(say, where λ =

n∑
i=1

λi)

This is clearly identified as the m.g.f. of a Poisson(λ) random variable. Thus S ∼ Poisson(λ)
and we have proved an important result which says that if for i = 1, 2, . . . , n, Xi ∼
Poisson(λi) and X1, . . . Xn are independent then X1 + · · ·+Xn ∼ Poisson(λ1 + · · ·+ λn). 5

3.6.3 Characteristic Function

While m.g.f. is very useful for characterizing a distribution, moment calculation and handling
i.i.d. sum, one major problem with it is that it may not exist (as in Example 3.22). Of
course if the moments do not exist12 m.g.f. may not be used for computation of moments
but its two other uses mentioned above gets handicapped as well in such cases. This calls
for another capsule which will always exist for any r.v.. Note that the p.g.f. serves the
purpose for non-negative integer valued random variables, which always exists, but here we
are looking for a similar tool for an arbitrary r.v..

Towards this end, instead of requiring to find E
[
etX

]
if one seeks E

[
eitX

]
, where i =

√
−1,

then the problem is solved. This is because, by Euler’s identity eitX = cos(tX) + i sin(tX)

and thus
∣∣∣eitX ∣∣∣ = 1 ∀t ∈ < and hence

∫∞
−∞

∣∣∣eitX ∣∣∣ f(x)dx =
∫∞
−∞ f(x)dx = 1 < ∞ leading to

the conclusion that E
[
eitX

]
always exists for any r.v. X.

Definition 3.22: The function φ(t) = E
[
eitX

]
, where i =

√
−1, is called the character-

istic function, or c.f. for short, of the random variable X.

As seen above c.f. of a r.v. always exists. Interestingly, when the moments exist these
can also be computed from the c.f. just as in case of the m.g.f.. To see this, just as we had
expanded the m.g.f., expanding the c.f. we get

φ(t) = E
[
eitX

]
= E

[
1 + itX +

(itX)2

2!
+

(itX)3

3!
+ · · ·

]
= 1+itE[X]+

i2

2!
t2
[
X2
]
+
i3

3!
t3
[
X3
]
+· · ·

so that

φ(0) = 1,
1

i
φ′(0) = E[X],

1

i2
φ′′(0) = E

[
X2
]
, . . . ,

1

in
φ(n)(0) = E [Xn] , . . .

12We have never quite formally broached this issue and at this point of time it may be worth while
examining this. As usual we shall present it for the p.d.f. case and for the p.m.f. case the equivalent results
are found by replacing the p.d.f. term f(x)dx with the p.m.f. p(x) and the integral with summation. The
function g(X) of a r.v. X with p.d.f. f(x) is said to have a finite expectation or its mean said to exist if and
only if

∫∞
−∞ |g(x)|f(x)dx <∞, in which case E [g(X)] =

∫∞
−∞ g(x)f(x)dx.

70



As the name suggests one major usage of c.f. is to characterize a distribution. By that
we mean that the characteristic function of a distribution is unique and one can identify a
distribution from its c.f. just as in case of m.g.f. (in case it exists). As a matter of fact
given the c.f. φ(t) of a r.v. its m.g.f. M(t) = φ(−it) i.e. by substituting −it for s in the
expression of the c.f. φ(s) one obtains the m.g.f. and thus it is no surprise that c.f. inherits
all the properties of an m.g.f.. In the case of c.f. however the characterization is a little more
crisp. By that we mean one can get an explicit formula for recovering the c.d.f. F (·) given
its c.f. φ(t), just as one has a direct formula of recovering the p.m.f. from the p.g.f. of a
non-negative integer valued random variable. The result which enables one to do so in case
of the c.f. is called the inversion theorem of c.f. which is just stated below without a proof.

Inversion Theorem for Characteristic Functions: If φ(t) is the characteristic func-
tion of a c.d.f. F (·) and F (·) is continuous in the interval (x− c, x+ c) then

F (x+ c)− F (x− c) = lim
T→∞

1

π

∫ T

−T

sin ct

t
e−itxφ(t)dt

Just as in case of the p.g.f. and m.g.f., the c.f. also gives one an easy handle on i.i.d. sums.
If X1, . . . , Xn are i.i.d. with c.f. φ(t) the c.f. of the sum S = X1 + · · ·+Xn is given by

φS(t) = E
[
eitS

]
= E

[
eit(X1+···+Xn)

]
= E

[
eitX1

]
. . . E

[
eitXn

]
= φ(t) . . . φ(t)︸ ︷︷ ︸

n−times

= [φ(t)]n

At this juncture it should be mentioned that the major use of c.f. is for proving theoretical
results. From the application point of view it is enough to be familiar with the notions of
p.g.f. and m.g.f.. However for proving theoretical results in general cases, one encounters the
pathology of non-existence of m.g.f. and in such situations the tool that is used is the c.f..
We shall prove one such result, which is extremely important from application point of view
as well as from motivation perspective of the most famous statistical distribution called the
Normal distribution, in the next chapter, which requires some preliminaries which is best
introduced in this sub-section on characteristic function. Thus we shall give one definition
and state one theorem without proof, which is very useful for proving theoretical results,
and as mentioned above we shall prove one such theoretical result called the Central Limit
Theorem using this theorem in the next chapter.

Definition 3.23: A sequence of random variables {Xn}∞n=1 with Xn having c.d.f. Fn(·) is
said to converge in distribution or converge in law or converge weakly to a random
variable X with c.d.f. F (·) if {Fn(x)} as a sequence of real numbers converges to F (x) for

every continuity point x of F (·). In such a situation the convergence is denoted by Xn
D→ X

or Xn
L→ X orXn

w→ X or Fn ⇒ F .

Weak Convergence Theorem: Let φn(t) denote the c.f. of the c.d.f. Fn(·) and φ(t)
denote the c.f. of the c.d.f. F (·), then Fn ⇒ F if and only if φn(t)→ φ(t) ∀t ∈ <.

We finish this sub-section (as well as this chapter) with a couple of examples, the last one
being of theoretical nature demonstrating weak convergence.
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Example 3.9 (Continued): The c.f. of the r.v. here is given by

φ(t)

= E
[
eitX

]
=

∫ ∞
−∞

eitxf(x)dx (by the law of unconscious statistician)

= λ
∫ ∞
0

e−(λ−it)xdx

=
λ

λ− it

∫ ∞
0

e−udu (by substituting u = (λ− it)x)

=
λ

λ− it
.

Note that

φ(−is) =
λ

λ− i(−is)
=

λ

λ+ i2s
=

λ

λ− s
= M(s).

Using the c.f.

E[X] =
1

i
φ′(0) =

1

i

d

dt

λ

λ− it

∣∣∣∣∣
t=0

=
1

i

iλ

(λ− it)2

∣∣∣∣∣
t=0

=
1

λ

E
[
X2
]

=
1

i2
φ′′(0) =

1

i2
d

dt

iλ

(λ− it)2

∣∣∣∣∣
t=0

=
1

i2
2i2λ

(λ− it)3

∣∣∣∣∣
t=0

=
2

λ2

so that V [X] = E [X2]− (E[X])2 = 2
λ2 − 1

λ2 = 1
λ2 5

Example 3.28: Consider the Binomial r.v. introduced in Example 25. For n = 1, 2, . . . let

Xn ∼ Binomial(n, pn) i.e. Xn =
∑n
j=1 Yj where each Yj are i.i.d. with Yj =

{
1 with probability pn
0 with probability qn

,

where qn = 1 − pn. Now assume the sequence pn is such that limn→∞ npn = λ > 0. Note
that then limn→∞ pn = 0. Now the question is do these Xn’s converge in distribution to
anywhere, and if so to which distribution? We shall provide a more direct proof of this in
the next chapter, but now we shall present a different proof utilizing the Weak Convergence
Theorem involving the characteristic function. We begin by computing φ

Xn
(t),the c.f. of

Xn. Note that since Yj’s are i.i.d. φ
Xn

(t) =
[
φ
Yj

(t)
]n

, where φ
Yj

(t) is the c.f. of Yj given by

φ
Yj

(t) = E
[
eitYj

]
= eit×1pn + eit×0qn = pne

it + (1− pn) = 1 + pn
(
eit − 1

)
.

Therefore φ
Xn

(t) = [1 + pn (eit − 1)]
n
. In order to evaluate limn→∞ φXn (t) we begin by

considering limn→∞ log
(
φ
Xn

(t)
)
.

lim
n→∞

log
(
φ
Xn

(t)
)

= lim
n→∞

n log
[
1 + pn

(
eit − 1

)]
= lim

n→∞
n
[
pn
(
eit − 1

)
− 1

2
p2
n

(
eit − 1

)2
− 1

3
p3
n

(
eit − 1

)3
+ · · ·

]
(as log(1 + x) = x− x2

2
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+
x3

3
− · · · for |x| < 1 and

∣∣∣pn (eit − 1
)∣∣∣ < 1∀t ∈ < for sufficiently large n as

∣∣∣eit − 1
∣∣∣

≤ 2 and lim
n→∞

pn = 0)

= lim
n→∞

[
(npn)

(
eit − 1

)
− 1

2
pn (npn)

(
eit − 1

)2
− 1

3
p2
n (npn)

(
eit − 1

)3
+ · · ·

]
= λ

(
eit − 1

)
(as lim

n→∞
(npn)

(
eit − 1

)
=
(
eit − 1

)
lim
n→∞

(npn) = λ
(
eit − 1

)
and

lim
n→∞

1

k
pk−1
n (npn)

(
eit − 1

)k
=

1

k

(
eit − 1

)k {
lim
n→∞

(npn)
}{

lim
n→∞

pk−1
n

}
=

1

k

(
eit − 1

)k
λ

×0 = 0∀k ≥ 2)

Since limn→∞ log
(
φ
Xn

(t)
)

= λ (eit − 1), it follows that, limn→∞ φXn (t) = exp {λ (eit − 1)}
and this is easily recognizable as the c.f. of a Poisson(λ) distribution, introduced in Example
27 as the c.f. of Poisson(λ) r.v. is given by

φ(t) = e−λ
∞∑
x=0

eitx
λx

x!
= e−λ

∞∑
x=0

(λeit)
x

x!
= e−λeλe

it

= exp
{
λ
(
eit − 1

)}
.

Thus we have shown that the c.f. of Binomial(n, pn) sequence with the property limn→∞ npn =
λ converges to the c.f. of a Poisson(λ) distribution. Therefore by the Weak Convergence

Theorem Binomial(n, pn)
D→ Poisson(λ) provided limn→∞ npn = λ. 5

Problems

3.1. A company has launched 4 products, and let the probability of any one of the products
being successful is 0.3. Assume that the products behave independently of each other. Let
the Number of Successful Products be denoted by X. Answer the following:

a. Plot the probability mass function of X.

b. What is the expected value of X?

c. What is the most likely value of X?

d. Plot the c.d.f. of X and find the median and IQR of X.

e. Find the standard deviation of X.

3.2. The shop floor of a factory has 4 machines. At any given point of time the probabilities
of the 4 machines going out of order are 0.05, 0.06, 0.08 and 0.1 respectively. Since the
machines operate independently of each other, it may be assumed that the break down of
machine-i is statistically independent of break down of machine-j for i 6= j, i, j = 1, . . . , 4.
Let X denote the number of machines which are out of order at any given point of time.
Answer the following:

a. Find the p.m.f. of X.

b. Find the c.d.f. of X.

c. What is the probability that at least one machine is out of order at any given point of
time?
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d. At any given point of time how many machines are most likely to be out of order? How
many machines would you expect to be out of order at any given point of time?

e. Find the standard deviation of X and interpret its value.

3.3. The c.d.f.’s of the number of cars sold on a given day by sales-persons A and B are as
follows:
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Who is a better salesperson and why? Give at least two reasons justifying your claim.

3.4. The state of a stock at a given point of time t, say Xt, can be in one of the three states
viz. below par (A), at par (B), or above par (C). The conditional probabilities of Xt+1, the
state of the stock at time t+ 1, transiting to one of these three states, given Xt, its state at
time t, are summarized in the following table:

P (Xt+1|Xt)
Xt+1 →
Xt ↓

A B C

A 0.7 0.2 0.1
B 0.3 0.5 0.2
C 0.3 0.3 0.4

Find the equilibrium (marginal) probability distribution of Xt i.e. that distribution of Xt

which yields the same distribution for Xt+1.
(Motivation: It can be shown that, if the behavior of the stock is Markovian, then eventu-
ally the state of the stock with the above transition probabilities will have this equilibrium
distribution.)

3.5. The number of days it takes to dear the bill of payments of an external supplier is
unimodal and has a mean of 2 days, median of 3 days and an SD of 0.5 days. Answer the
following:

a. Comment on the symmetry of the distribution.

b. What upper limit of the number of days should you quote to an external supplier who
has just submitted his bill for payments, so that you are 95% certain that his bill would
get cleared by then?

c. Sketch an approximate shape of the distribution, showing the scale of abscissa.
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3.6. The cost of manufacturing an IC chip is Rs. 100 per unit up to 1000 units and it is
Rs. 75 afterwards. Suppose the monthly demand for the chip, X (say), has the p.d.f. of

X, f(x) =

{
0.001e−x/1000 if x > 0
0 otherwise

. The chip is priced at Rs. 125 per unit and are

manufactured in lots of the expected monthly demand of 1000. Answer the following:

a. What is the probability of incurring a financial loss from the manufacture of the chip in
a given month?

b. What can be done to minimize the loss, other than increasing the price?

c. Find the probability distribution of the monthly profit from the manufacture of the chip.

d. What is the expected monthly profit from the manufacture of the chip?

3.7. The p.d.f.’s of Annual Returns (the percentage of gain from an investment) from
Securities A and B fare as follows:
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Answer the following:

a. Show that Security B is a better investment than Security A.

b. If Rs. 1000 is invested in Security A for one year what is the probability that the
investment will return more than Rs. 200 by the end of the year?

c. Find the distribution of bi-annual return (the percentage of gain) from Security B, as-
suming that an investment is compounded annually.

3.8. Minimum selling price acceptable to the owner of an apartment, which is up for sale,

say X in lakhs of Rs., has the p.d.f. fx(x) =

{
c e−

1
2
(x−8) if x > 8

0 otherwise
; while the maximum

price, which a potential buyer is willing to pay, say Y , also in lakhs of Rs., is uniformly
distributed over 6 to 10. Assume that X and Y are independent of each other. Answer the
following:

a. Find the value of c.

b. What is expected minimum selling price of the owner of the apartment?

c. What is the probability of the apartment getting sold?

3.9. The probability density function of X, denoting the amount of time (in hours) it takes
for a file to move from point A to point B in an organization is as follows:
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Answer the following:

a. Find the height of the trapezium.

b. Find the c.d.f. of X.

c. What is the probability that it will take at least 4 hours for a file to move from point A
to point B?

d. What is the probability that it will take between 1.5 to 3.5 hours for a file to move?

e. Find the mean and median amount of time it takes for a file to move.

f. Within how many hours 90% of the files have moved from point A to point B?

g. 5 files have been initiated from point A at 10 AM. Let Y denote the number of these
reaching point B by 12 noon.
i. Find the p.m.f. of Y .
ii. What is the most likely number (out of 5) of files reaching point B by 12 noon?
iii. How many (of the 5) do you expect to reach point B by 12 noon? Interpret the

expected value.

3.10. Let X be a positive continuous random variable having p.d.f. fX(x). Find a formula
for the p.d.f. of 1

X+1
.

3.11. Agent 001 is trapped between two narrow abysmal walls. He swung his gun around
in a vertical circle touching the walls and fired a wild (random) shot. Assume that the angle
which his pistol makes with the horizontal is uniformly distributed between 00 and 900. Find
the distribution of the height where the bullet landed and its mean.

3.12. It has been empirically found that the productivity of the top management (measured
in terms of their contribution towards the growth of the company) Y , is related to their
annual salary (in lakhs of Rs.) X, through the equation Y = −X2 + 16X − 45. In a certain
large corporate if the annual salary of the top management is uniformly distributed between
Rs.5 and Rs.11 lakhs, find the distribution of their productivity.

3.13. The p.d.f. of the radius of buoys manufactured by a process is triangular, centered
at a and spread over [a − b, a + b] for some a > 0 and b > 0. Find the distribution of the
volume of the manufactured buoys, assuming that they are perfect spheres.
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3.14. Suppose the supply curve of a product is given by the equation P = Q2e0.1∗Q where
P denotes the Price and Q denotes the Quantity supplied. The p.d.f. of the Price of the

product is modeled by fP (p) =

{
0.1e−0.1p if p > 0
0 otherwise

. Find the distribution of supply.

3.15. The joint p.m.f. of age, X, and the number of completed projects, Y , by a group of
trainee engineers during the training period is as follows:

Y →
X ↓ 0 1 2 3

22 4 6 3 2
25 1 4 5 2
28 2 4 2 2

Answer the following:

a. What is the probability that a randomly chosen trainee is 25 year or older and has
completed at least two projects?

b. What is the probability that a 25 year or older trainee has completed at least two projects?

c. If a randomly chosen trainee has completed at least two projects, what are the (i) most
likely, and (ii) expected, ages of the trainee?

d. Find the regression of Y on X and plot it. Write your conclusion about the way age
affects the number of projects completed by the trainees.

e. Find the correlation coefficient between X and Y and interpret its value.

3.16. The summary of complaints, received by a dealer of a particular automobile company,
classified according to the model and the type of problem is as follows:

Problem→
Model ↓ Engine Transmission Brake Suspension Body Other

Small 8 14 6 2 4 1
Luxury 1 4 3 1 0 1
Heavy 4 8 2 3 1 2

Above table is based on 500 Small, 100 Luxury and 200 Heavy vehicles sold by the dealer so
far. Answer the following:

a. Which model is most problem prone?

b. Which component, irrespective of the model, requires attention?

c. If a vehicle has a Suspension problem, what is the probability that it is Heavy?

d. What is the probability that a Luxury car has problem with its Brake?

e. What is the probability that the problem of a problematic Heavy vehicle is classified as
Other?

f. What is the probability that a car manufactured by the company is Small and has Trans-
mission problem?

g. What is the probability that a car has Body problem?

Serious problems are those with the Engine and the Transmission.
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h. If a car is brought in with a Serious problem what is its most likely model?

i. What is the probability that a Small or a Luxury car has Serious problem?

3.17. The number of sales-persons in a company, which assembles personal computers,
when classified according to their Sales Record (median number of machines sold per day)
and Experience (rounded to the nearest number of years) is as follows:

Sales Record→
Experience ↓ 0 1 2 3

0 4 3 3 0
1 2 4 4 2
2 1 2 4 1

Answer the following:

a. What is the probability that a randomly chosen sales-person from the company has at
least one year experience?

b. What is the probability that a randomly chosen sales-person from the company sells at
least one machine on a given day?

c. What is the probability that a randomly chosen sales-person from the company has at
least one year experience and sells at least one machine on a given day?

d. What is the probability that on a given day, a sales-person with one or more years of
experience sells at least two machines?

e. What is the probability that a sales-person selling two or more machines on a given day
has at least one year experience?

f. If a sales-person sells at least one machine on a given day, what is the most likely number
of years of experience the sales-person has got?

g. Find and plot the regression of the Sales Record on Experience.

h. Find the correlation coefficient between the Sales Record and Experience and interpret
its value.

i. Does the variability of the Sales Record remain unchanged for changing Experience?

3.18. The joint distribution of number of education years (X) and monthly salaries (Y in
thousands of Rs.) of managers in the IT industry with 2 years of experience is as follows:

X →
Y ↓ 15 16 17 ≥ 18

25-35 0.08 0.06 0.04 0.02
35-45 0.05 0.36 0.24 0.05
45-55 0.02 0.03 0.02 0.03

a. Draw the p.d.f. of monthly salaries of managers in the IT industry with 2 years of
experience.

b. What proportion of managers in the IT industry with 2 years of experience and drawing
a salary of at least Rs.35,000 per month have at least 17 years of education?
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c. Show that as far as the salary is concerned it is immaterial whether a manager in the IT
industry with 2 years of experience have 16 or 17 years of education.

d. Show that managers in the IT industry with 2 years of experience and at least 18 years
of education earn more than those with 15 years of education.

e. Show that on an average managers in the IT industry with 2 years of experience tend to
earn more with their number of years of education.

3.19. A company is registered in three different stock exchanges A, B and C, say. On any
given working day, let X and Y denote the proportion of shares changing hands in A and
B respectively. Assume that the joint distribution of (X, Y ) is uniform on their natural
domain. Answer the following.
a. What is the probability that on any given working day more than 50% of the shares

change hands in exchange A?

b. On any given working day, what proportion of shares do you expect to change hands in
exchange C?

c. Find the correlation coefficient between X and Y and interprete its value.

3.20. Consider the problem of allocating 5 trainees at random to 4 regional head offices. Let
N denote the number of head offices not receiving any trainee and X1 denote the number of
trainees allocated to city 1. Answer the following:
a. Find the joint p.m.f. of N and X1.

b. Find the marginal p.m.f.’s N and X1.

c. Find the conditional p.m.f.’s N and X1.

d. Find the correlation coefficient between N and X1.

e. Find the two regression functions.

3.21. Consider a tied match-point between players A and B in a tennis match, a situation in
which from that point onwards the player to win two successive points, wins the match. Let
p denote the probability of A winning a point (at any given point) and the wins and losses
at successive points be independent. Let the number of points (services) that are played to
arrive at a winner be denoted by X. Answer the following:

a. Show that the p.m.f. of X is given by p(x) =

{
(p2 + q2)(pq)n−1 if x = 2n
(pq)n if x = 2n+ 1

, for

n = 1, 2, . . ., where q = 1− p=P(B winning a point). Also check that p(x) is indeed a
legitimate p.m.f.

b. Show that the probability of A winning is p2(1+q)
1−pq .

3.22. A travel portal among other things, sells vacations to its members. For this travel
portal, for each of its members, let X denote the number of vacations the member had
taken last year, and Y denote the average price (in Rs.) per vacation for that member. The

p.m.f. of X is given by
x 0 1 2 3 4
p(x) 0.6 0.15 0.1 0.1 0.05

. For x 6= 0 given X = x, Y has

the conditional p.d.f. f(y|x) =

{
0.001xe−0.001x(y−1000) if y ≥ 1000
0 otherwise

(this is because the

minimum price of a vacation is Rs.1000). Answer the following:
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a. Find the expected average price per vacation paid by a member, who has taken at least
one vacation.

b. What is the probability of a member spending a total of more than Rs.2500 on vacation
last year from that portal?

c. Assuming that the same pattern continues this year, what would be the most likely
number of vacations that a member would take this year, given that she has just
booked a vacation of Rs.1500?

3.23 The joint p.m.f. of age, X, and the number of completed projects, Y , by a group of
trainee engineers during the training period is as follows:

Y →
X ↓ 0 1 2 3

22 4 6 3 2
25 1 4 5 2
28 2 4 2 2

Answer the following:

a. Find the regression of Y on X and plot it. Write your conclusion about the way age
affects the number of projects completed by the trainees. [10]

b. Find the correlation coefficient between X and Y and interpret its value. [10]

3.24. For a product like cell-phone the cost of production increases as the number of features
increases. It is postulated that the number of features that a future cell-phone will contain,
say X, is going to have a Poisson distribution with mean λ, that is X will have a p.m.f.
p(x) = e−λ λ

x

x!
for x = 0, 1, 2, . . .. Now given X = x, that is a cell-phone having x number of

features, the cost of production, say Y , which is a non-negative continuous random variable, is

envisaged to have the p.d.f. f(y|X = x) =

{
e−{(y−θ

x+1+φx/2)/φx/2}/φx/2 if y > θx+1 − φx/2
0 otherwise

for some θ > 1 and φ > 0. Find the correlation coefficient of X and Y .

[Hint: A random-variable Y having a p.d.f. f(y) =

{
e−{(y−ψ)/τ}/τ if y > ψ
0 otherwise

is said to

have a two parameter exponential distribution with location parameter ψ and scale parameter
τ or rate 1/τ . For such a random variable, E[Y ] = ψ + τ and V [Y ] = τ 2.]

3.25. In a large R&D lab, let X and Y respectively denote the number of domestic and
foreign patents filed by a scientist in any given year. Based on the past data (X, Y ) is found
to have the following joint p.m.f.:

Y →
X ↓ 0 1 2

0 0.02 0.20 0.05
1 0.15 0.25 0.13
2 0.10 0.15 0.05

Answer the following:
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a. Show that the number of domestic patents filed by a scientist is larger than that of the
number of foreign patents.

b. Find the median of the total number of patients filed by a scientist in a given year.

c. Find the correlation coefficient of the number of domestic and foreign patents filed by a
scientist and interpret its value.

d. Find the regression of Y on X.

3.26 Let X denote the Bid Price of a Buy order in 100’s of Rs., and Y denote the number
of hours it takes for the order to get executed, for a particular (not very liquid) security, in
an on-line order driven market (such as BSE or NSE). Based on empirical observations, the
random vector (X, Y ) appears to have a joint probability density function

fX,Y (x, y) =
1

2
x2 exp

{
−
(
y

2
+ 1

)
x
}
I[x>0, y>0](x, y),

where IA(x, y) is the indicator function of the set A ⊆ <2 i.e. IA(x, y) =

{
1 if (x, y) ∈ A
0 otherwise

.
Answer the following:

a. Show that X and Y are not independent.

b. What is the probability that it takes at least an hour for a Buy order with a Bid Price
of Rs.200 to get executed?

c. Find the regression of Y on X.

d. Qualitatively describe how X is affecting Y .

3.27. Minimum selling price acceptable to the owner of an apartment, which is up for sale,

say X in lakhs of Rs., has the p.d.f. fx(x) =

{
c e−

1
2
(x−8) if x > 8

0 otherwise
; while the maximum

price, which a potential buyer is willing to pay, say Y , also in lakhs of Rs., is uniformly
distributed over 6 to 10. Assume that X and Y are independent of each other. Answer the
following:

a. Find the value of c.

b. What is expected minimum selling price of the owner of the apartment?

c. What is the probability of the apartment getting sold?

Appendix 3.A: Properties of the Distribution Function

Here we collect together a few useful properties of the c.d.f. F (x) = P [X ≤ x] of an arbitrary
r.v. X, which could be discrete, continuous or a combination of both.

Property 1 (a): limx→−∞ F (x) = 0
Proof: Take and fix any sequence of real numbers {xn}∞n=1 such that limn→∞ xn = −∞. Let
An = {ω ∈ Ω : X(ω) ≤ xn}. Then An ↓ φ, the null set. Thus,
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lim
x→−∞

F (x)

= lim
n→∞

F (xn) (by definition of limit)

= lim
n→∞

P [X ≤ xn] (by definition of a c.d.f.)

= lim
n→∞

P (An) (by definition of An)

= P ( lim
n→∞

An) (by the continuity property of the Probability function)

= P (φ) (as lim
n→∞

An = φ)

= 0 5

Property 1 (b): limx→∞ F (x) = 1
Proof: Take and fix any sequence of real numbers {xn}∞n=1 such that limn→∞ xn = ∞. Let
An = {ω ∈ Ω : X(ω) ≤ xn}. Then An ↑ Ω. Thus,

lim
x→∞

F (x)

= lim
n→∞

F (xn) (by definition of limit)

= lim
n→∞

P [X ≤ xn] (by definition of a c.d.f.)

= lim
n→∞

P (An) (by definition of An)

= P ( lim
n→∞

An) (by the continuity property of the Probability function)

= P (Ω) (as lim
n→∞

An = φ)

= 1 5
Property 2: F (x) is a monotonically increasing function of x i.e. x1 < x2 ⇒ F (x1) ≤ F (x2).
Proof: For n = 1, 2 let An = {ω ∈ Ω : X(ω) ≤ xn}. Then since x1 < x2, A1 ⊆ A2 and the
result follows from the definition of c.d.f. and the monotonicity property of the Probability
function. 5

Property 3: F (x) is a right-continuous function i.e. F (x+) = limy→x+ F (y) = F (x) ∀x ∈
<.
Proof: Fix any x ∈ <. Next take and fix any decreasing sequence of real numbers {xn}∞n=1

such that xn ↓ x as n → ∞. Let An = {ω ∈ Ω : X(ω) ≤ xn} and A = {ω ∈ Ω : X(ω) ≤ x}.
Then An is a decreasing sequence of sets with limn→∞An = ∩∞n=1An = A. For checking the
last equality, take any ω ∈ ∩∞n=1An. If X(ω) > x, ∃N ∈ P 3 xn < X(ω) implying ω /∈ An
∀n ≥ N and thus ω /∈ ∩∞n=1An. Hence ω ∈ ∩∞n=1An ⇒ X(ω) ≤ x ⇒ ω ∈ A proving that
∩∞n=1An ⊆ A. Since A ⊆ An ∀n ∈ P , A ⊆ ∩∞n=1An proving that ∩∞n=1An = A. Now

lim
y→x+

F (y)

= lim
n→∞

F (xn) (by definition of limit)

= lim
n→∞

P [X ≤ xn] (by definition of a c.d.f.)

= lim
n→∞

P (An) (by definition of An)

= P ( lim
n→∞

An) (by the continuity property of the Probability function)

= P (A) (as lim
n→∞

An = A)

= P [X ≤ x] (by definition of A)

= F (x) (by definition of F (x))82



5
Property 4: P [X < x] = limy→x− F (y) = F (x−), the left-hand limit of F (·) at x.
Proof: Fix any x ∈ <. Next take and fix any increasing sequence of real numbers {xn}∞n=1

such that xn ↑ x as n → ∞. Let An = {ω ∈ Ω : X(ω) ≤ xn} and A = {ω ∈ Ω : X(ω) < x}.
Then An is an increasing sequence of sets with limn→∞An = ∪∞n=1An = A. For checking the
last equality, take any ω ∈ ∪∞n=1An. Then ∃n ∈ P 3 X(ω) ≤ xn < x⇒ ω ∈ A proving that
∪∞n=1An ⊆ A. Now take any ω ∈ A. Since X(ω) < x and xn ↑ x, ∃N ∈ P 3 xn > X(ω)
∀n ≥ N implying ω ∈ An ∀n ≥ N and thus ω ∈ ∪∞n=1An proving that A ⊆ ∪∞n=1An.
Therefore ∪∞n=1An = A. Now

lim
y→x−

F (y)

= lim
n→∞

F (xn) (by definition of limit)

= lim
n→∞

P [X ≤ xn] (by definition of a c.d.f.)

= lim
n→∞

P (An) (by definition of An)

= P ( lim
n→∞

An) (by the continuity property of the Probability function)

= P (A) (as lim
n→∞

An = A)

= P [X < x] (by definition of A) 5
From Property 4 and the definition of c.d.f. it follows that P [X = x] = P [X ≤ x]−P [X <
x] = F (x) − F (x−). At any point x ∈ < thus F (x) − F (x−) gives the quantum of jump
the c.d.f. experiences which exactly equals the probability mass given at the point x. This
observation is needed in understanding the proof of the next property.

Property 5: Let D ⊆ < denote the set of points where F (·) is discontinuous i.e. x ∈ D ⇒
F (x−) = limy→x− F (y) 6= F (x) = limy→x+ F (y) = F (x+). The set D is countable.

Proof: For n ∈ P let Dn =
{
x ∈ < : F (x)− F (x−) ≥ 1

n

}
. Dn can have at most n elements,

otherwise the sum of the probability masses of the distinct elements in Dn would exceed 1.
Since the maximum amount of jump the c.d.f. can face is 1 in which case such a point is
contained in D1, and for any other amount of jump ε > 0 at a point x ∃n 3 1

n
< ε implying

x ∈ Dn, D = ∪∞n=1Dn. Thus D, the set of points of discontinuity of F (·), is a countable
union of finite sets, and is thus countable. 5

Property 6: F (x) = F1(x) + F2(x) where F1(x) is a step function and F2(x) is everywhere
continuous.
Proof: Let D denote the set of points of discontinuity of F (·) as in Property 5. Then
since D is countable, let D = {x1, x2, . . .}. Define F1(x) =

∑
xi∈D:xi≤x[F (xi) − F (xi−)].

Then obviously F1(x) is a step function with jumps at the points {x1, x2, . . .}. Let F2(x) =
F (x)− F1(x). If F (·) is continuous at x then so is F1(·) and hence F2(·), and for xi ∈ D it
is a trivial matter to see that F2(xi−) = F2(xi). 5

Based on these properties now a clear picture of the nature of a general r.v. emerges, which
may be summarized as follows.

1. At any point x ∈ <, F (·) is either continuous or experiences an upward jump.

2. If F (·) is continuous at a point x, then F (x) = F (x−) and therefore P [X = x] = 0.
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3. If F (·) gets a jump at point x, then there is a positive probability mass at x whose
value equals the quantum of jump F (x)− F (x−).

4. If F (·) is flat or constant on any interval (a, b] then P [a < X ≤ b] = P [{ω ∈ Ω :
X(ω) ≤ b} − {ω ∈ Ω : X(ω) ≤ a}] = P [X ≤ b] − P [X ≤ a] ( since A = {ω ∈ Ω :
X(ω) ≤ a} ⊆ {ω ∈ Ω : X(ω) ≤ b} = B, P (B−A) = P (B)−P (A))= F (b)−F (a) = 0.

5. The number of points where X can have a positive probability mass is countable,
justifying the definition of a discrete r.v.

6. It is enough to study just the discrete and continuous r.v. as any r.v. can be decom-
posed into having just these two components.

Finally as in point 4 above, let us list down the formulæ for computing probabilities of all
types of events involving a r.v. using its c.d.f.. The proofs follow from the definition of F (·),
Property 4 and arguments similar to the one in point 4 above.

1. P [X ≤ a] = F (a).

2. P [X > a] = 1− F (a).

3. P [a < X ≤ b] = F (b)− F (a)

4. P [X < a] = F (a−)

5. P [X ≥ a] = 1− F (a−)

6. P [X = a] = F (a)− F (a−)

7. P [a ≤ X ≤ b] = F (b)− F (a−)

8. P [a < X < b) = F (b−)− F (a)

9. P [a ≤ X < b] = F (b−)− F (a−)

Appendix 3.B: Properties of Moments and Related Quan-

tities

Here we collect together some useful properties of Expectation, Variance, Covariance and
Correlation Coefficient. Since the formulæ for the moments are different for the discrete and
continuous cases, we shall prove these results only for the continuous case. The proofs for
the discrete case are similar, with the p.d.f. replaced by p.m.f. and the integrals replaced by
summation. Thus let f(x) denote the p.d.f. of a continuous r.v. X.

Properties of Expectation

Property E1: For constants a and b, E[a+ bX] = a+ bE[X]
Proof:
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E[a+ bX]

=
∫ ∞
−∞

(a+ bx)f(x)dx

= a
∫ ∞
−∞

f(x)dx+ b
∫ ∞
−∞

xf(x)dx

= a+ bE[X] 5

Property E2: E[g(X)] =
∫∞
−∞ g(x)f(x)dx

Proof: Let Y = g(X) be a many-to-one function. Then fY (y), the p.d.f. of Y is as given in
(6) and thus by definition

E[g(X)] = E[Y ]

=
∫ ∞
−∞

yfy(y)dy

=
k∑
i=1

∫ ∞
−∞

I[y ∈ Y i]yf
(
g−1
i (y)

) ∣∣∣∣∣ ddyg−1
i (y)

∣∣∣∣∣ dy (by (6))

=
k∑
i=1

∫
Yi
yf
(
g−1
i (y)

) ∣∣∣∣∣ ddyg−1
i (y)

∣∣∣∣∣ dy
=

k∑
i=1

∫
Xi
g(x)f(x)

∣∣∣∣∣ d

d(g(x))
x)

∣∣∣∣∣
∣∣∣∣∣ ddxg(x)

∣∣∣∣∣ dx (by substituting y = g(x) we get that, for y ∈ Y i,

g−1
i (g(x)) = x and x = g−1

i (y) so that y ∈ Y i ⇒ x ∈ X i and the rest follows from the

routine change of variable method for integration)

=
∫ ∞
−∞

g(x)f(x)dx (as X i ∩ X j = φ for i 6= j and ∪ki=1 X i = X = (−∞,∞)) 5

For the next three properties, let X = (X1, X2)
′ be a random vector with joint p.d.f.

f(x1, x2). Let the marginal p.d.f. of Xi be denoted by fi(xi) for i = 1, 2. Also let the
conditional p.d.f. of X1|X2 = x2 be denoted by f1|2(x1|x2).

Property E3: For constants c1 and c2, E[c1X1 + c2X2] = c1E[X1] + c2E[X2]
Proof:

E[c1X1 + c2X2]

=
∫ ∞
−∞

∫ ∞
−∞

(c1x1 + c2x2)f(x1, x2)dx1dx2

= c1

∫ ∞
−∞

∫ ∞
−∞

x1f(x1, x2)dx1dx2 + c2

∫ ∞
−∞

∫ ∞
−∞

x2f(x1, x2)dx1dx2

= c1

∫ ∞
−∞

{
x1

∫ ∞
−∞

f(x1, x2)dx2

}
dx1 + c2

∫ ∞
−∞

{
x2

∫ ∞
−∞

f(x1, x2)dx1

}
dx2

= c1

∫ ∞
−∞

x1f1(x1)dx1 + c2

∫ ∞
−∞

x2f2(x2)dx2

= c1E[X1] + c2E[X2] 5

Property E4: If X1 and X2 are independent, E[X1X2] = E[X1]E[X2]
Proof: If X1 and X2 are independent, f(x1, x2) = f1(x1)f2(x2). Thus
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E[X1X2]

=
∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, x2)dx1dx2

=
∫ ∞
−∞

∫ ∞
−∞

x1x2f1(x1)f2(x2)dx1dx2

=
∫ ∞
−∞

{
x2f2(x2)

∫ ∞
−∞

x1f1(x1)dx1

}
dx2

= E[X1]
∫ ∞
−∞

x2f2(x2)dx2

= E[X1]E[X2] 5

Property E5: E [E[X1|X2]] = E[X1]
Proof:

E [E[X1|X2]]

=
∫ ∞
−∞

E[X1|X2 = x2]f2(x2)dx2

=
∫ ∞
−∞

{∫ ∞
−∞

x1f1|2(x1|x2)dx1

}
f2(x2)dx2

=
∫ ∞
−∞

∫ ∞
−∞

x1
f(x1, x2)

f2(x2)
f2(x2)dx1dx2

=
∫ ∞
−∞

∫ ∞
−∞

x1f(x1, x2)dx1dx2

=
∫ ∞
−∞

{
x1

∫ ∞
−∞

f(x1, x2)dx2

}
dx1

=
∫ ∞
−∞

x1f1(x1)dx1

= E[X1] 5

Properties of Covariance

We begin with a formula for Cov(X1, X2), in the same spirit of (1), that is simpler than
Definition 14.

Cov(X1, X2)

= E [(X1 − E[X1])(X2 − E[X2])]

= E [X1X2 −X1E[X2]−X2E[X1] + E[X1]E[X2])]

= E [X1X2]− E [X1E[X2]]− E [X2E[X1]] + E [E[X1]E[X2]] (by E3)

= E [X1X2]− E[X2]E [X1]− E[X1]E [X2] + E[X1]E[X2] (by E1)

= E [X1X2]− E[X1]E[X2]

Property C1: For a constant c, Cov(X,c)=0
Proof:
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Cov(X, c)

= E[cX]− E[c]E[X]

= cE[X]− cE[X]

= 0 5

Property C2: Cov(X,X) = V [X]
Proof:

Cov(X,X)

= E[X ×X]− E[X]E[X]

= E[X2]− (E[X])2

= V [X] 5

Property C3: For constants a, b, c and d, Cov(aX1 + b, cX2 + d)=acCov(X1, X2).
Proof:

Cov(aX1 + b, cX2 + d)

= E [(aX1 + b)(cX2 + d)]− E[aX1 + b]E[cX2 + d]

= E[acX1X2 + adX1 + bcX2 + bd]− (aE[X1] + b)(cE[X2] + d) (by E1)

= acE[X1X2] + adE[X1] + bcE[X2] + bd− (acE[X1]E[X2] + adE[X1]bcE[X2] + bd)

= ac(E[X1X2]− E[X1]E[X2])

= acCov(X1, X2) 5

Property C4: Cov(X1, X2 +X3) = Cov(X1, X2) + Cov(X1, X3)
Proof:

Cov(X1, X2 +X3)

= E [X1(X2 +X3)]− E[X1]E[X2 +X3]

= E[X1X2 +X1X3]− E[X1](E[X2] + E[X3])

= (E[X1X2]− E[X1]E[X2]) + (E[X1X3]− E[X1]E[X3])

= Cov(X1, X2) + Cov(X1, X3) 5

Property C5: If X1 and X2 are independent then Cov(X1, X2) = 0 but the converse is not
true.
Proof:

Cov(X1, X2)

= E[X1X2]− E[X1]E[X2]

= E[X1]E[X2]− E[X1]E[X2] (by E4)

= 0

Example 17 is an instance where Cov(X1, X2) = 0 but X1 and X2 are not independent. 5
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Properties of Variance

Property V1: For constants a and b, V [a+ bX] = b2V [X]
Proof:

V [a+ bX]

= E[(a+ bX)2]− (E[a+ bX])2

= E[a2 + 2abX + b2X2]−
(
a2 + 2abE[X] + b2E2[X]

)
(by E1)

= a2 + 2abE[X] + b2E[X2]− a2 − 2abE[X]− b2E2[X]

= b2
(
E[X2]− E2[X]

)
= b2V [X] 5

Property V2: For constants a and b, V [aX1 + bX2] = a2V [X1] + 2abCov(X1, X2) + b2V [X2]
Proof:

V [aX1 + bX2]

= E[(aX1 + bX2)
2]− (E[aX1 + bX2])

2

= E[a2X2
1 + 2abX1X2 + b2X2

2 ]−
(
a2E2[X1] + 2abE[X1]E[X2] + b2E2[X2]

)
(by E1)

= a2(E[X2
1 ]− E2[X1]) + 2ab(E[X1X2]− E[X1]E[X2]) + b2(E[X2

2 ]− E2[X2])

= a2V [X1] + 2abCov(X1, X2) + b2V [X2] 5

Property V2 is extended for a linear combination of p r.v.’s as follows. Let Xp×1 =
X1
...
Xp

 be a p× 1 random vector and ` =


`1
...
`p

 be a p× 1 vector of constants. Then

E[`′X] = `′E[X] and V [`′X] = `′Σ`

where Σ is a p× p matrix, called the variance-covariance or dispersion matrix of X which is
also denoted by D[X]. Σ = ((σij))p×p and σij = Cov(Xi, Xj), such that by C2, the diagonal
elements of Σ are V [Xi]’s and the off-diagonal elements are Cov(Xi, Xj)’s. If X1, . . . , Xp are
independent of each other by C5, σij = 0 for i 6= j and thus V [`′X] =

∑p
i=1 `

2
iV [Xi].

Property V3: V [X1] = E[V [X1|X2]] + V [E[X1|X2]]
Proof:

E[V [X1|X2]] + V [E[X1|X2]]

= E
[
E[X2

1 |X2]− E2[X1|X2]
]

+ E
[
E2[X1|X2]

]
− (E[E[X1|X2])

2

= E[X2
1 ]− E

[
E2[X1|X2]

]
+ E

[
E2[X1|X2]

]
− (E[X1])

2 (by E5)

= E[X2
1 ]− E2[X1]

= V [X1] 5
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Properties of Correlation Coefficient

Property R1: Correlation coefficient ρ between two random variables X1 and X2 is a num-
ber such that always −1 ≤ ρ ≤ 1 and ρ = ±1 if and only if X2 = a + bX1 with probability
1 for some constants a and b.
Proof: For any real number λ, V [λX1 +X2] is always non-negative. Thus

V [λX1 +X2] ≥ 0 ∀λ ∈ <
⇔ λ2V [X1] + 2λCov(X1, X2) + V [X2] ≥ 0 ∀λ ∈ < (by V2)

⇔ 4Cov2(X1, X2)− 4V [X1]V [X2] ≤ 0 (if ax2 + bx+ c, a quadratic in x is non-negative

∀x ∈ < then its discriminant b2 − 4ac must be less than or equal to 0)

⇔ ρ2 ≤ 1

⇔ −1 ≤ ρ ≤ 1

If X2 = a+ bX1 for some constants a and b,

ρ

=
Cov(X1, a+ bX1)√
V [X1]V [a+ bX1]

=
bV [X1]

|b|V [X1]
(by C2, C3 and V1)

= ±1

On the other hand if ρ = ±1, then Cov2(X1, X2) = V [X1]V [X2] and thus

V

[
X2 −

Cov(X1, X2)

V [X1]
X1

]

= V [X2]− 2
Cov2(X1, X2)

V [X1]
+

Cov2(X1, X2)

V [X1]2
V [X1] (by V1)

= V [X2]− 2V [X2] + V [X2]

= 0

Now if for some r.v. Y , V [Y ] = 0, that implies E[(Y − E[Y ])2] = 0. Since (Y − E[Y ])2 is a
non-negative quantity, its expectation can be 0 if and only if (Y −E[Y ])2 = 0 with probability

1, or if and only if Y = E[Y ], a constant, with probability 1. Thus X2 − Cov(X1,X2)
V [X1]

X1 = a,
a constant, with probability 1, and therefore X2 = a + bX1 with probability 1, for b =
Cov(X1,X2)

V [X1]
. 5

Property R2: If X1 and X2 are independent then ρX1,X2 = 0 but the converse is not true.
Proof: Follows immediately from C5. 5

Property R3: Correlation coefficient is a pure number whose absolute value does not de-
pend on scale or origin shift i.e. |ρa+bX1,c+dX2| = |ρX1,X2 | for all constants a, b, c, d ∈ <.
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Proof:

|ρa+bX1,c+dX2|

=

∣∣∣∣∣∣ Cov(a+ bX1, c+ dX2)√
V [a+ bX1]V [c+ dX2]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ bdCov(X1, X2)

|bd|
√
V [X1]V [X2]

∣∣∣∣∣∣ (by C3 and V1)

= |ρX1,X2 |
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