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1 Introduction

As is well known, given a data set Y = y, on a random variable Y ~ f(y|8), all information
about the unknown parameter @ is contained in its posterior distribution

m(0|y) < L(6|y)m(0) (1)

where the likelihood function L(8|y) = TIi-, f(v:|@) and m(0) is the prior density of 6.
Bayesian inference about the model and model parameters proceeds with this posterior dis-
tribution, which among other things involve calculation of posterior moments and quantiles,
posterior probabilities of A C ©, marginal densities of components of @, predictive densities
of Y etc.. All these involve an appropriate integral of the posterior. In most applications
it is futile to expect to analytically obtain these integrals. Thus one has to resort to nu-
merical methods. However if @ is p x 1, for p even as small as 4, brute force numerical
integration methods are usually prohibitively time consuming even in today’s gazillion in-
structions per second computing capability due to the so-called “curse of dimension”. This
led the researchers in search of alternative methods, which is briefly described in the next
paragraph.

7(0|y) is a probability density and we are interested in its various features, some examples
of which are mentioned in the preceding paragraph. Now even if the study of these exact
features may involve integrals of 7(0|y), most of these features can be at least approximately
studied if one has a large enough sample 01, 8,, ..., 0y from this joint posterior density of 6.
For instance if one is interested in the component-wise posterior mean of 8, theoretically given
by [ 07(8]y) db, one can easily approximate this quantity of interest by + >N . 0; by virtue
of the law of large numbers. If one is interested in the median of 6, for some j € {1,2,...,p},
it is easily approximated by the sample median calculated from 6;1,0;5...,0;5. If we are
to calculate [4 7(0|y) d@ for some A C @, for large NV, this integral is well approximated
by + >, 14(0;), where I4(z) is the indicator function of the set A taking values 1 if
v € Aand 0if v ¢ A. In general, if one is interested in [g g(@)7(6|y) d@ for some known
function ¢(-), by the law of large numbers, it is well approximated by % YN .g(0;). Since
most of the features of ¢(0|y) we are interested in Bayesian analysis can be expressed as
Jo 9(0)m(8ly) dO for some function g(-), this solves the problem of numerically studying
them, provided we have a large enough sample 81, 0,,...,0y from 7(0|y).

This leads to devising methods of drawing sample from a possibly high dimensional joint
density m(0@|y). In the next section we first review some basic techniques of drawing sam-
ples or simulating observations from univariate densities, and then later move on to more
advanced techniques for multi-dimensional densities involving setting up a Markov Chain
(MC) with 7(0|y) as its stationary or invariant distribution, and then drawing samples from
s this MC using its transition density, which has popularly come to be known as the method
of Markov Chain Monte Carlo or MCMC for short.
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2 Univariate Methods

In this section we discuss some standard traditional methods of drawing samples from a
univariate density 7(6). Though in this section we have suppressed the dependence of 7(-)
on y for the sake of brevity, indeed what we have is a posterior density 7 () from which we
wish to draw samples.

At the outset we assume that we have a method of drawing sample from a UJ0, 1] distri-
bution, which is the Uniform distribution in [0, 1]. For instance an algorithm called linear
congruential generator gives a sequence of pseudo-random integers {r,} between 0 and
M — 1 according to the formula 7,1 = (Ar, + B)modM for certain choices of (A4, B, M).
Using this algorithm one can generate a series of U|0, 1] variates. We need not get into
the details of this because all programming languages typically provide a library function
to generate such UJ0, 1] variates (like the function random() in C’s stdlib.h for instance).
Thus we start discussing the methods of generating observations from a univariate density
7(6), assuming that we can draw samples from a U[0, 1| distribution.

2.1 Discrete 7(0)

Suppose 7(6) is discrete with support {60y, 6,,...,0;} and p.m.f. {m, 7o, ..., 7}, with the
understanding that P(6 = 6;) = m; for j = 1,2,..., k. In order to generate an observation
from this distribution, generate a U ~ U[0, 1] and then take the generated 6 as 6; if 1= m; <
U< zg’zl m;, where a vacuous sum (occurring for j = 1) is defined to be 0. Since Zle =
1, for every U € [0, 1) one is guaranteed to find a unique j satisfying the above condition. It
is easy to check that the 6 generated by the above method has support {61, 6,, ...,0;} with
PO =0;)=mjforj=1,2,... k.

2.2 Inversion Method

Suppose 6 has p.d.f. 7(f) with c.df. II(0) = [°_7(¢) dp such that II7'(-), the inverse
function of II(f), can at least be numerically obtained. Then in order to generate a 6 from
this distribution, first generate a U ~ U[0, 1] and then set § = II7*(U). Since I1(-) is a c.d.f.
0 < TI(-) £ 1V, and thus the domain of IT71(-) is [0, 1] so that IT71(U) is a well-defined
quantity. A 6 generated using this method has the c.d.f. P(# < ¢) = P(IT"}(U) < ¢) =
P(U < II(¢) = II(¢), since U ~ UJ0, 1], showing that the generated 6 has the c.d.f. TI(9)
and is thus a sample from the p.d.f. 7(0).

Example 1: Suppose 6 ~exp()) so that 7(6) = Ae * and I1(#) = 1 - e . For this II(-),
II7'(u) = — (log(1 — u)) /X. Thus after generating a U ~ U(0, 1), set § = — (log(1 — U)) /A
and you have an observation from the exp()\) distribution. Note that since 0 < U < 1,
0 <1—U < 1sothat log(1 —U) < 0 and the generated 6 > 0. \V4



2.3 Transformation Method

Sometimes it is possible to catch hold of a transformation ¢ =g¢(#) such that it is easy to
draw sample from the distribution of ¢. Then after generating a ¢ from this “easy to draw
sample from” distribution of ¢, one applies the inverse transformation g !(¢) to get a sample
on f. A couple of examples should drive home the point.

Example 2: Suppose § ~Weibull(), 8) so that w(6) = A\36°~ e~ Now it is easy to show
that if # ~Weibull(), 8), #° ~exp()\). Thus to generate an observation from Weibull(}, 3),
first generate an observation ¢ from exp(A) using the inversion method as in Example
1, and then take § = ¢'/#. Note that in terms of the elementary U ~ U(0,1), 6 =
[— (log(1 — U)) /A]'"#, which is exactly same as inverting the Weibull c.d.f. II(8) = 1 -
oM \Y%

In example 2, the transformation method is essentially equivalent to the same inversion
method mentioned in §2.2. To appreciate the transformation method, let us look at the next
example.

Example 3: Suppose 6 ~ N(u,0?). The first stage transformation is ¢ = (6 — u)/o such
that ¢ ~ N(0, 1), the standard Normal distribution. Thus if we have a method of generating
a ¢ from the standard Normal distribution then we can take § = p + o¢. But now how
can one draw a sample from a N (0, 1) distribution? The c.d.f. of the N(0,1) distribution is
given by ®(z) = \/% I e 27’ dx, inverting which is not a very easy task with no analytical
solution, and thus the inversion method, though can be used in principle, does not readily
render a solution. This problem is circumvented by considering the following transformation,
called Box-Muller transformation.

Let ¢; and ¢y be i.i.d. N(0,1). Then their joint density is given by %e*%(‘ﬁ*"’%), —00 <
¢1, P2 < 00. Now consider a polar transformation of the co-ordinates given by ¢; = r cos(%))
and ¢o = rsin(¢). For this transformed variables the range of r is [0, 00) and that of v is
[0, 27], and their joint density is given by ire*%ﬂ. The term 7 comes from the Jacobian

31 941 .
of the transformation given by 3‘922 5’2”2 CPS(d)) —7sin(v) ‘ = r. Thus from the
e 5 sin(y)) 7 cos(v)

, ire’%’"z for 0 <r <ooand 0 <% < 2r it is clear that r and v are
independent with the density of r given by re" ] 0,00)(r) and that of ¢ given by i[ 0,271 (¥)-
Now consider a further transformation of r given by s = %7“2. Then by a simple change of
variable the density of s is given by e *Ij )(s), so that s~exp(1). Now for s~exp(1),

e * ~ Ul0,1] and for ¢ ~ U0, 27] 54 ~ U0,1]. Thus finally we get that if U; and U, are
iid. U[0,1], write s = —log(U;) so that r = v/2s = \/—21log(U;) and ¢ = 27Us, such that

1 = rcos(yp) = 1/—2log(Uy) cos (2nUs) and ¢y = rsin(y) = /—21log(U;) sin (27U,) are i.i.d

N(0,1). Thus after drawing two independent U[0, 1] variates if one subjects them to the
above transformation, one obtains two independent N(0, 1) variates. This yields a method
of drawing observations from an arbitrary N(u,o?) distribution. v

joint density of (r, 1))



2.4 Rejection Method

So far we have assumed that the exact form of the p.d.f. 7(6) or the c.d.f. II(f) is completely
known. But as in (1) many times it is possible that only the form of the posterior is known
without any knowledge about the normalizing constant. Thus let the (proper) posterior
density 7(0) = cyf(0) where ¢y is unknown and f(6) is known with [ f(6) df = 1/c; so
that (%0 7(0 df) = 1. The problem is to generate an observation from (). Suppose g(¢) be
a density function (i.e. g(¢) > 0 and [°) g(4) d¢ = 1) such that for some known constant
¢, f(0) < cg(f) —oo < @ < 0o, and one can easily draw observations from g(¢) using one of
the methods discussed above. Now in order to generate an observation from 7 (f), generate
an U ~ U(0,1) and a ¢ from the density g(¢) independently of each other. Then accept the
generated ¢ as an observation 6 from 7(6) if U < f(#)/ {cg(¢)}, otherwise again generate
a different pair of (U, ¢) independently of each other till the generated ¢ value is accepted
according to the above criterion. Let the final accepted value be denoted by . The # thus
generated has the density () because of the following.

f(9)
USC%@)

P<¢Sy

Computationally this method is a major breakthrough which allows one to generate observa-
tions from a 7(#) without requiring any knowledge about the normalizing constant. However
the price one pays for this is one have to keep on generating (U, ¢) from (U[0, 1], g(¢)) till
¢ satisfies the condition U < f(¢)/{cg(¢)}. Thus the efficiency of this method depends
on the envelope function g(¢) and the constant ¢. The best one can do for the constant
c is choose it as ¢ = suUp_ g0 %, but still with this choice one might end up with an
undesirable rate of rejection.

The Rejection method is illustrated in the following important example, which constantly
crops up in posterior simulation.

Example 4: Suppose § ~Gamma(a, \) having density 7(f) < 82 'e=*? and we are to gen-
erate an observation from this gamma density. First note that if ¢y ~Gamma(a, 1) then
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6 = ¢/ A~Gamma(a, A). Thus if we can generate an observation ¢ from Gamma(a,1) we
immediately have an observation from Gamma(a, A) as # = ¢/A. Next notice that if « is
a positive integer, then ¢ = >, 1); where the « 9;’s are i.i.d. exp(l). Thus when « is a
positive integer, generate o many i.i.d. exp(1) say 11, ¥s, ..., 9, following the method given
in Example 1 and then take 0 = %Z?:l i, which is an observation from the Gamma(x, A)
distribution. Now suppose « is not an integer. Let ¢« = « — |«], where |«] is the in-
teger part of a or the largest integer < a. Now ¥ ~Gamma(a, 1) has the representation
P = Z}ﬂ Vi + q, where 11,1, .., 1|4 are ii.d. exp(1l) and v, is independent of the |«]
¥;’s and has a Gamma/(a, 1) distribution. Thus finally the problem is narrowed down to gen-
erating an observation from a Gamma(a, 1) distribution with 0 < a < 1. This is generated
using the rejection method as follows.

ﬁg{¢“1ﬁ0<¢<1

Consider the density g(¢) = . First note that g(¢) is a density on

ate | ¢ if 6 >1
(0, 00) because first of all it is non-negative and [5° g(¢) d¢ = 2= [fol v Ldp+ [FCe? dqb}
= ﬁ[% &%y + (—6"”)‘?0] = aa—fe[i + %] = 1. The density of Gamma(a, 1) distribution is

x 0 te™® = f(#) (say). Now note that for 0 < § < 1, f(#) < 6*! as e™? < 1; and for

1 <0 <o0, f(0) <e?ash! <1since a < 1. Thus VO € (0,00), f(f) < 9(0) and
9

P e? if0o<f<l1 P
also % = e gl g > 1 , such that ¢ = sup_ . cpcoo % = &€ Thus now we
are in a situation where we have the envelope density g(¢), from which it is easy to draw
sample from (as will be seen shortly) and which dominates the target density modulo the
normalizing constant f(6). This situation is depicted in Figure 1 below for a = 0.5.

Figure 1: Envelope Function and Target Density
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Thus f(0) < cg(f) VO € (0,00) where g(f) is a proper density. Now the specification
will be complete once we explain how to draw an observation from the envelope density
g(¢). This will be done using the inversion method. Thus let G(¢) = [¢ g(d) df denote
. < ¢ ifo<op<1
— ate
the c.d.f. of ¢, which equals G(9) { ey ﬁ(e‘l _e?) ifg>1
to generate an observation from this G(-) first generate an U ~ U(0,1) and then set ¢ =

. Now in order



ate 1/a if e
( ey if0<U <& . Thus algorithmically generation of a # ~Gamma(a, \)
“log ﬂﬂ) if £ <U<1

e a
is as follows.

Step 1. Generate v1,%s, ..., i.i.d. exp(1) as in Example 1.
Step 2. Generate U; ~ U(0,1).

aterr )/ if _e
Step 3. Generate Uy ~ U(0,1) and let ¢ = ( € UZ) 0 <lh <22 , where a
—log (e 1=t2) if £ < Up <1

= a-|a].
Step 3. If ¢ < 1 check if U; < e ¢ and if ¢ > 1 check if U; < ¢®~!. If the answer is Yes for

either case (¢ < 1 and ¢ > 1) set ¢, = ¢ and proceed to step 4, otherwise go to Step
2.

Step 4. LetH:%[ le H‘%]- \V/

3 Discrete MC

Let {X,}>, be a sequence of random variables such that X,,’s take value in {0,1,2,...},
called its state space, and

P(Xpq1 = j|Xo =i0, X1 = i1, Xo = 4, ..., X1 = in_1, Xy, = 1) = P(Xpy1 = j|Xp = 7) = pyj.
2)

If the sequence {X,, }°° , satisfies equation (2) then it is called a Markov Chain and equation
(2) is called the Markovian property of the chain. In words, the Markovian property states
that given the past X, Xi,..., X, 1 and the present X,,, the immediate future status X, 1
does not depend on the past and it only depends on the present. Also note that this
conditional probability P(X,;1 = j|X,, = i) dictating the state of immediate future given
the present does not depend on n. These p;;’s are called one step transition probabilities.
Note that each p;; > 0 and >720p;; = 1 Vi = 0,1,2,.... In general we are interested in
n-step transition probabilities pgl)’s denoting P(X, = j|Xo = i)’s. These are found using
the following equations called Chapman-Kolmogorov equations.

(m+n)

ij

= P(Xmin = j|Xo = 1)

= ZP(Xm-f—n =7, Xpm = k| Xy = 1)
k=0

= > P(Xmin = j|Xm =k, Xo = 1) P(Xrm = k| X = i)
k=0

= Y P(Xmin = j|1Xm = k)P(Xp = k| Xo = i)
k=0

= 3 P(X, =j|Xo = k)pl”
k=0
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— (m)_ (n)

m n
sz'k Dg;
k=0

P11 D12
Let P denote the one step transition probability matrix given by P = | P21 P22

Then by the Chapman-Kolmogorov equation, if one denotes the n-step transition probability
(n) _(n)

P11 P12 -
matrix by P™ = | p§) ply) ... |, P = PMPM and therefore P™ = PV P
(since P = P) = Pr2p2— ... = p

In order to get to the limit theorems lending theoretical backbone justifying the MCMC
methods we have to first get acquainted with a few definitions.

Two states 7 and j are said to communicate with each other, denoted as 7 <» j if 3m and
n such that pgl) > 0 and pf,";) > 0. It is easy to show that i <+ j is an equivalence relation
ie. (@)i<ri(b)i< j=j<id,and (c)i < j & j< k= 1<« k Thus the states
which communicate with each other form disjoint equivalence classes. A MC is said to be
irreducible if it has only one such equivalence class. That is a chain is irreducible if all of
its states communicate with each other.

The period of a state i is given by d(i) = g.c.d{n : pgl) > 0}. That is if n is not divisible
by d(i) then pgf )= 0. Tt is interesting to note that periodicity is class property i.e. all states
in the same equivalence class induced by the relationship 7 <> j have the same period. A

state is called aperiodic if d(7) = 1.

State 7 is called recurrent if the probability that the chain comes back to state ¢ at some
point of time in the future starting from state ¢ is 1, otherwise it is called transient. Like
periodicity recurrence can also be shown to be a class property for for equivalence classes
induced by 7 <> 7.

A probability distribution 7; = P(X = j) for j = 0,1,2,... is called an invariant or
stationary distribution for a MC if

WJ:Z’R'ipZ'j V]:O,l,Q, (3)

i=0
It is called so because of the following. Suppose X, the starting point of the chain assumes
values according to the distribution {7;}$°,. Then the distribution of X, is given by

P(X, =)

P(Xl =7, Xo —l)

Mg ||

.
I
o

P(X; = j|Xo =14)P(Xo =1)

|
M

Ml
(o=}



o
= ) miDij
=0

That is in that case the distribution of X} is also given by {7;}°, and by induction it follows
that the marginal distribution of all the X,’s are also {m;}°,. Thus in this case the MC
becomes stationary and the distributions of each X, are invariant.

Now we are in the position to state the main theorem forming the theoretical basis of MCMC
computation. Using renewal theory it can be shown that if j is aperiodic lim,_, p,(?) exists
Vi, 7 and the limiting value does not depend on 7. If j is transient this limit is always 0. For
certain types of recurrent states (called null recurrent, which again can be shown to be
a class property) also lim,, o, pz(-?): 0. For other types of recurrent states (called positive

recurrent) this limit is positive and our interest lies in such chains.

Thus consider an irreducible, aperiodic chain. Since it is irreducible, and recurrence/transience
and null/positive recurrence are class properties, all its states will fall in one of the following
three categories: a) either all states are transient, or b) all states are null recurrent, or c)
all states are positive recurrent. We have no interest in cases a) or b) because for these

(M)— 0 and it can be shown that for such chains there does not exist any

(]
invariant distribution. For case ¢) it can be shown that lim, pl(-;-l)

two cases lim,,_,o p

= 7; where 7; is the
unique invariant distribution of the chain. If one grants that lim, ., pgl) exists where the
limiting value does not depend on i, then it is intuitively very easy to see that these limiting

values will yield an invariant distribution. This is because

n—oo

o0
= lim Y pipy
k=0

- (n)
. n
= Y pij lim pyy

n—00
k=0

o0
= Z TkPkj
k=0

This result forms the basis of MCMC computation, which may be stated as follows. Start
with an aperiodic, irreducible, positive recurrent chain. Start with any initial value X, = 1.
Now keep on simulating the next values of the chain using the transition matrix P. That
is, first generate an X; in {0,1,2,...} using the transition probabilities {p;;}52,. Suppose
the generated value of X is 4;. Next generate an X, in {0,1,2,...} using the transition
probabilities {p;,;}32, etc.. In general at the (n — 1)-th stage if the generated value of
Xy—1=in_1 then generate an X, in {0, 1,2, ...} using the transition probabilities {p;,_,;}32-
Now if one runs this simulation for a long time, say n, and then runs this simulation a large
number of times, say N, then according to the above theorem, since lim,, ., ng) = m;, the
proportion of times X, in these N simulations equals 7, will approximately equal ;.
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This gives one a way to generate a sample from the distribution {7;}%2,. In the MCMC
computation one has this target distribution {m;}32, from which one wants to draw a sample.
For this purpose one sets up an aperiodic, irreducible, positive recurrent MC with transition
matrix P such that a) {m;}52, is the invariant distribution of P, and b) it is easy to sample
from {0, 1,2, ...} using the probabilities {p;;}32, given in the rows of P. Then one simulates
this MC as described in the above paragraph in order to obtain a sample from {m;}%,.

Practical applications of MCMC involve drawing sample from a p-dimensional joint density
7(0) defined on an uncountable state space (typically the p-dimensional Euclidean space R?)
and for this, instead of the transition matrix P one has to appropriately set up transition
densities P(8, ¢») with the interpretation that given X, = 0, X, is distributed according to
the conditional density P(#, ¢):limd¢_>0 P(gp; < Xp1; < ¢j+dp;,j=1,2,...,p|X,=0)/
[15-, d¢; (where X, ; denotes the j-th component of X ), so that for any A C R?, P(X 11 €
A|X, = 0) denoted by P(0,A) can be found as [, P(6,¢)d¢. MC’s with such multi-
dimensional state-space and their use in MCMC computation is taken up in the next section.

4 MCMC

Suppose we have a posterior density 7(0) with support R?, from which we wish to sample.
As stated in the previous section, for this purpose we shall set up an irreducible, aperiodic,
positive recurrent MC with state-space R? (and will thus be necessarily vector-valued) and
transition density p(¢, @) such that this 7(0) is going to be the invariant distribution of
this chain. Now since we are dealing with a multi-dimensional continuous state-space, the
definition of the invariant distribution needs to be suitably modified from that given in (3)
for the uni-dimensional discrete case.

7(0) will be called an invariant distribution for a MC with state-space R? and transition
density p(¢, 0) if

7(60) = | p(®.0)n(¢)dg VO € R” (4)

The interpretation of (4) above is analogous to that of (3). If X has density m(¢) then
since p(¢, @) is the conditional density of X; at 0 given Xy = ¢, p(¢, )7 () gives the
joint density of (X, X 1), and thus [, p(¢, 0)7(¢)d¢ will give the marginal density of X,
which according to (4) is identical to the marginal density of Xo. Thus if 7(0), the density
of X, satisfies (4), then X; and inductively X, X3, ... all will have marginal density 7(0)
and hence it is called an invariant distribution of the MC.

Now we shall take up the formalism of n-step transition and the basic limit theorem provid-
ing the theoretical back-bone justifying the MCMC computation. Thus given Xy = ¢ we are
now interested in the conditional density of X, at @ denoted by p(™ (¢, 8). The expression
for p(®) (¢, 0) is derived following the same logic as P™ was derived using the Chapman-
Kolmogorov equation in the discrete case. The conditional density of X ,| X, = ¢ at @ may
be obtained by integrating %), the variable for X,,_;, out from the joint conditional density
of (X, X, 1)|Xo = ¢ at (0,v). This density is same as the product of the conditional
density of X ,[(X, 1 = 1, Xo = ¢) at 6 and the conditional density of X, ||X, = ¢ at
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1. The former is nothing but p(1, @) by the Markovian property, while the later is same as
p™" (¢, 1p). Thus we get

P(6,0) = [ p" (o, 9)p(w, 0)dy (5)

Intuitively, starting from ¢ in order to transit to @ in n steps, one has to first come somewhere
1 € RP at the (n — 1)-th step from where you transit to the destination @ in the next step.
The integration allows all possible stepping stone 1 at the (n — 1)-th step.

While equations (4) and (5) are fine for MC’s with continuous state-space RP, but since
p(¢, 0) is a density, it does not allow a transition from the current value X, = ¢ to itself
characterized by X, ;1 = ¢, with a positive probability. But one of the MCMC techniques
called the Metropolis-Hastings algorithm has such a feature i.e. it allows a transition ¢ — ¢
with positive probability. Thus in order to accommodate such movements, equations (4) and
(5) are modified as follows.

Let P(¢, d@), called the transition kernel, denote the approximate probability of transition
from ¢ — (0,0 + dB), a neighborhood of 6, and likewise let 7*(d@), the invariant distribu-
tion, denote the approximate probability of X, € (68,0 + d@), so that in case of densities,
P(¢,d0) = p(¢,0)d0 and 7*(dO) ~ 7(0)d6. Note that typically 7*(d@) will have the den-
sity 7(6) but P(¢,d0) need not necessarily have an associated transition density. Now with
these notations, which would allow a degenerate transition ¢ — ¢, 7*(d@) will be called the
invariant distribution if

7*(d6) = /W P(¢,d6)r*(dp) VO € R?, (6)

and the n-step transition kernel P™ (¢, d#) denoting the approximate probability of X, €
(0,0 + dB) given that the chain started at X = ¢ is given by

PO (@,d0) = [ POD(¢,de)Plap, dB). (7)

Note that how (6) boils down to (4), and (7) reduces to (5) in case of the transition densities
with P(¢,d@) =~ p(¢,0)d@. From this point on till the end of §4.1 we shall work with these
generalized versions (6) and (7) rather than the restrictive density versions (4) and (5).

In this general set-up let us first examine why MCMC works, which has already been
explained in the last but two paragraphs of §3. The basic reason for the validity of MCMC
is that lim,_,. P (¢, dB) exists V¢p, @ € RP, this limit does not depend on the initial state
¢ and equals 7%(d@), the unique invariant distribution of an irreducible, aperiodic, positive
recurrent chain. First note that since the chain is irreducible, all states would have the
same periodicity and recurrence status i.e. either all states are transient or null recurrent or
positive recurrent. Not much intuition can be given why the limit should exist except that if
the chain is not aperiodic, P™ (¢, d8) would be 0 unless n is a multiple of d > 1, the period
of the chain, and thus being aperiodic is a necessary condition for the existence of the limit.
Actually the limit exists V@. For transient states since there is a positive probability of the
chain never coming back to it, and for null recurrent states since the expected waiting time
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of return is oo, it is intuitively quite obvious that for such states lim,,_,,, P™ (¢, d@) should
equal 0. Now if we grant that the limit would exist for positive recurrent states, let us next
verify the validity of the next two points. Since by the Markovian property, probabilistically
the chain restarts itself once it comes back to @, which it is guaranteed to do in finite time
since 0 is positive recurrent, it is intuitively clear why the limit does not depend on the
initial state ¢ and only depends on the probabilistic nature of the final state 8. Thus let us
define lim,,_,. P (¢, d@) as some quantity 7*(d@), which does not depend on ¢. Next let
us verify why 7*(d@) should be an invariant distribution for the chain.

7*(d)

= lim,,_,o, P™ (¢ do) (by definition of 7*(d@))

= limy 00 fro PU7) (¢, dp) P(1p,dB)  (by (7))

= [y limy, 500 PV (o, dap) P(1h, dO) (assumlng that we can interchange the
limit and the integral)

= [ro P(%, dO)7*(dep) (by definition of 7*(dp))

showing that the limit must satisfy (6) and thus must be the invariant distribution of the
chain. Now we shall be through once we can show that the invariant distribution of a chain
is unique. Thus let 7'(d@) be another invariant distribution. Then

7' (d0)
= Jr» P(¢,d0)7'(d¢p) (by (6))
])» Eapplylng (6) again for 7'(d¢))

= Jro P(¢,d0) { [z» P (¥, d@) 7' (d9p)
= [ro {Jr» P(¢,dp)P(¢h,dO)} ' (dep) (by interchanging the integrals
w.r.t d¢ and dip)

= Jro PP (4, dO)7" (d9p) (by (7))

= Jro P™ (3, dO)7' (dab) (by repeating similar argument as above)

Now letting n — oo, interchanging the limit and the integral and using the fact that
lim,, oo P™ (2p, d@) = 7*(dB) we get that

7(d9) = /72 (d0)7 (dp) = 7 (d6)

showing that the invariant distribution of the chain is unique, which is given by lim,,_,s, P™ (¢,
d@) = 7*(d0). This completes the arguments justifying the MCMC computation. Given a
target density 7(0), if one can set-up an MC with a transition kernel P(¢,d@) such that
7*(d@) ~ 7(0)d0 is its invariant distribution satisfying (6), then because of the fact that
lim,, o, P™ (¢, dB) = 7*(d@), one can simulate an observation from 7(@) by simulating the
chain for a long time using the transition kernel P (¢, d@) starting with any initial value ¢.

Now on the surface though it appears that finding an appropriate transition kernel P (¢, d@)
for a given 7*(d@) as its invariant distribution, which is also easy to sample from, is like the
proverbial search of a needle in the haystack, fortunately there are two algorithms which
allow us to do just that. The first one is called the Metropolis-Hastings algorithm and the
second one is called Gibbs sampling. We take these up in the next two sub-sections.
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4.1 Metropolis-Hastings Algorithm

Consider the transition kernel
P($,d6) = p(¢, 6)d6 + 1($)3 5(d6) ®)

1 ifgpe(6,0+d0
where p(¢,0) > 0, p(¢,¢) = 0, (5¢(d0) = { 0 otherwgse ) and r(¢) = 1 —
Jr» P(0,0)dO. Note that p(¢, 0) is not necessarily a density, if it is, 7(¢)=0, but in gen-
eral we want to allow r(¢) > 0 which requires [, p(¢,0)d@ < 1. The transition kernel
in (8) states that given ¢, in the next step there is a positive probability r(¢) that the
chain stays at ¢ and the probability of moving to the neighborhood of some other value 0 is
~ p(¢,0)dO. Note that the transition kernel is completely specified by the function p(¢, 0)
and [, P(¢,d@) = 1. Now a sufficient condition for the posterior 7(8) to be the invariant
density of this transition kernel is given by the condition

T(0)p(6, @) = T(B)p(¢,0) VO, € R”. (9)

Condition (9) is called the reversibility condition. Intuitively, since the Lh.s of (9) gives
the unconditional probability of transition from 8 — ¢ and the r.h.s gives the unconditional
probability of transition from ¢ — 8, for reversible chains both the (unconditional) proba-
bilities of the transitions from @ — ¢ and ¢ — 0 are same. Now let us see why condition
(9) is sufficient for m(0) to be the invariant density of the transition kernel P(¢, df) given in
(8). For (@) to be invariant for P (¢, d0) it has to satisfy the condition given in (6). Thus
let us start with the r.h.s. of (6).

Jro P(,dO)7*(d)

= [Jr» 7(0)p(@, 0)dp] dO + [, ()1 ()5 (dB)dp

= (s 7(0)p(0, 9)d) d6 + [0 7(@)r(¢)dp  (by (9) and definition of d(dB))
[/=» P(6, $)dp] w(0)dO + 7 (0)r(6)dO

(1—-7(0))n(0)d6 + =(0)r(0)do (by definition of r(0))

= 7*(d0)

&

showing that (9) is sufficient for 7(80) to be invariant for P(¢, d@).

Now again in general, given 7(8) it is not easy to come up with a p(¢, 0) satisfying (9). But
suppose one starts with an arbitrary conditional density ¢(¢,0) with [, q(¢, 0)d6=1. If
this ¢(-, -) exactly satisfies (9), well and good, take r(¢) = 0 and proceed with the transition
kernel (8) with p(-,-) replaced by ¢(-,-). Otherwise suppose for some (¢, 8)

m(0)q(0, @) > m(p)q(¢, 0). (10)

In this case the probability of transition 8 — ¢ is more than the probability of transition
¢ — 0. Thus to compensate for this imbalance, in such cases we will not always make
the transition from @ — ¢, while will always make the transition ¢¢ — 6. This notion is
crystallized by borrowing idea from the rejection method described in §2.4. In case of the

12



inequality (10), we shall make the transition @ — ¢ with some probability (6, ¢) < 1 and
make the transition ¢p — 6 with probability a(¢, @) = 1. Thus in general a transition 8 — ¢
is made according to the transition kernel (8) with its p(0, ¢)= ¢(80, ¢)a(0, @), where a(-,-)
is determined in such a way that this p(@, ¢) now satisfies the reversibility condition (9) i.e.
in case of (10), set a(¢,0) =1 and choose «(8, ¢) such that

7(0)q(0, )(0, ) = 7(P)q(p, 0)x(ep, 0) = w()q(h,0) = (6, §) = %'

~(0)a0,6)’
(9), and thus 7(0) becomes the invariant distrlbutlon of (8) with ¢(¢, ) (¢, 0) as its p(¢, ).

Thus in general if we set «(0, ¢p)= Mlmmum{ (P)i($.0) 1}, (0, d) =q(0, P)a(0, @) satisfies

Above arguments provide the essential logic motivating the development of the transition
kernel of the Metropolis-Hastings algorithm, such that the target distribution (@) becomes
the invariant distribution of the developed transition kernel. But now let us turn the table
and look at the definition of this developed transition kernel and then check why it works
i.e. why 7(0) is its invariant distribution. This is sort of redundant in view of the above
arguments leading to the development of the following transition kernel (11), but nevertheless
this recapitulation would hopefully be helpful for readers seeing this algorithm for the first
time.

The Metropolis-Hastings transition kernel is given by

P(¢,d8) = q(¢, 0)a (¢, 0)d6 + r(¢)d 4 (d0) (11)

where ¢(¢,8) > 0, ¢(¢,d) = 0, frw q(p,0)d0 = 1, a(¢,0) = Mlnlmum{ ¢q(Zs "3) }

(@) = 1 = Jzs a(, 0)a(¢,0)d6 and 64(d6) = 1 if ¢ € (0,0 +db)

0 otherwise
that starting at some ¢ the probability of transiting to the neighborhood of some 8 # ¢ is
~ q(¢,0)a(¢p,0)dl, where d is the hyper-volume of the neighborhood. Since ¢(-,0) is a
conditional density and 0 < (¢, 0) < 1, this transition from ¢ — 6 # ¢ may be interpreted
as first generating a 6 using the conditional density ¢(¢, @) and then making the transition
¢ — 0 with probability a(¢, ). Otherwise the chain transits from ¢ — ¢, the same value
¢, with probability r(¢).

First let us check that the P(¢,d0) given in (11) is indeed a legitimate transition kernel
by checking that

. This kernel says

Ji, P(#:40) = | a(9.0)a(6,0)d0+ [ 1(6)34(d0) = (1 =r(9)) +7(¢) = 1.

Next let us check why 7(0) must be the invariant distribution of the transition kernel (11).
Note that (11) is same as (8) with p(¢,0) = ¢(¢, 0)a(¢,0). Thus now if we can show that
this p(¢, 0) satisfies the reversibility condition (9) then following the arguments given in the
second paragraph of this sub-section in page 12, (@) must be the invariant distribution of
the transition kernel (11). Thus,
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= 7(®)a($,0)a(¢,0)

_ {ww)qw,e);gg;zg;g; if 7(¢)a(, 6) > (0)a(8, ¢)
(®)a(.0) it 7(¢)a(6,6) < 7(6)4(6, )
m(0)q(6, P) if m(¢)q(,0) > 7(0)q(0, @)

- {w(o)q<o,¢>’;§<£;§§3"’; if 7(¢)g(¢, 6) < (0)a(6, ¢)

= 7(0)p(0,9)

showing that p(-,-) satisfies the reversibility condition (9).

Thus according to the probabilistic interpretation of the transition kernel given in the
discussion following (11), the Metropolis-Hastings algorithm may be summarized as follows.
Start with an arbitrary initial value 8 = 0. In the n-th iteration suppose the current value
of 0 is 0,. Then first generate a candidate value ¢ from a proposal density ¢(8,,-). If
a(0,,¢) =1 set 0,1 = ¢ and proceed to the (n + 1)-st iteration. If a(8,,¢) < 1 then
generate an v ~Uniform|0, 1], and set 8,1 = ¢ if v < (0, @) otherwise set 8,1 = 0,
and in either case proceed to the (n + 1)-st iteration. Note that in this algorithm one needs
the target density 7(@) only for the computation of a(-, ), and from the definition of «(¢, ),
it is clear that since it depends on 7(-) only through the ratio 7(0)/7(¢), like the rejection
method in §2.4, this algorithm also does not require a knowledge about the normalizing
constant of 7(+), and thus making the Metropolis-Hastings algorithm a very attractive choice
as a method for generating observations from a posterior distribution specified through (1).

4.2 Gibbs Sampling

By far the most popular method of generating observations from a multi-dimensional poste-
rior 7(0) has been the so-called Gibbs sampling. Though it may be formulated as a special
case of the Metropolis-Hastings algorithm using the product of kernel property, here we shall
take a more direct approach. By this we mean, we shall first describe the algorithm, show
that this yields a transition density of an MC, and then show that the target density 7 (0)
is the invariant distribution of this transition density.

Suppose 8 = (6,...,0;,...,0,) € RP. In the sequel we have to deal with all the p
one-dimensional conditional distributions of each component given the rest. To simplify
notation, we shall generically use «(:|---) for the conditional density of the component
which does not appear in the subscripts of the conditioning variables. Thus for example
7(0;161,...,0,_1,dj+1, ..., ¢p) will denote the conditional density of the j-th component given
the remaining (p—1) fixed at their respective values 61, ...,0;_1,@;41, ..., ¢p. Similarly joint
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density of a subset of the components will be identified by the subscripts of the dummy
variables appearing in w(---) i.e. for example, 7(01,...,0;_1,¢j11,...,d,) will denote the
joint density of the (p—1) components consisting of all but the j-th component of the original

p-

The algorithm provides a transition ¢ — @ as follows. Given an initial value ¢ =
(@1, ..., ), first generate a 6; from 7(-|¢o, ..., @,), the conditional density of the first com-
ponent given the remaining (p — 1) components fixed at their initial values. Then generate a
6y from 7(-|01, ¢3, ..., #,), the conditional density of the second component after fixing the
first component at its just generated value #; and the remaining (p — 2) components fixed at
their initial values. In general for 1 < j < p, generate a 0; from w(-|0y,...,0,_1, dji1, ..., dp),
the conditional density of the j-th component after fixing the values of the first (j — 1) com-
ponents at their generated values 6,...,60;_; and the remaining (p — j) components fixed at
their initial values (¢;;1,...,#,). And finally generate 6, from =(-|6;,...,6, 1), the condi-
tional density of the p-th component given the remaining (p — 1) components fixed at their
generated values. This gives us a transition from ¢ — 6. The steps involved in this transi-
tion is pictorially depicted in the following diagram, where the density used for generating
the univariate random variable at each stage is indicated above the arrow, and the resulting
current state of the p-tuple after the arrow.

01|¢27 :¢p) W(02|015¢37"'7¢P)
(¢la"'a¢p)7 (01a¢2a"'a¢p) >(015025¢3a"'a¢p)—)
’/T(ej‘91,...,9j,1,¢j+1,...,¢p)
(017"'70j—17¢j:"'a¢p) ” (017"'70j7¢j+17"'7¢p) —r
77(9?—1|915---19p—2a¢p) 7T(9p|(91,...,(9p_1)
(011 R 9;0—2’ ¢p—1a ¢p) — (017 R 0})—11 ¢p) E— (913 oo aep)

It is easy to see that the above transition ¢p — 0 has the transition density p(¢, 0) given
by,

p—1
p(¢: 0) :W(01|¢27"'7¢p) {H7T(0j|01:"'79j—17¢j+17"':¢p)} (0 |017" p 1) (12)
=2

Note that p(¢, 6) is a density because being a product of densities it is non-negative and

| v(s,6)de
p—1
= /7?}771 [W(01‘¢2,...,¢p) {gﬁ(ejmb...,@jh(ﬁjﬂ, . ..,¢p)} {/ (9 ‘91,__ p 1)d9 }]
p—1
11 d6;
j=1
p—2
= /7—\:/1;72 [77(01‘¢2a...a¢p) { W(Hj\ﬁl,...,ﬁj1,¢j+1,...,¢p)}

{/7271-(01)_1‘91,... p— 2,¢p dep 1}

=y
9
%



_ /R[W b:1bs,s ..., 6,) {/ w(92|91,¢3,...,¢p)d92}] d6,

I
HR]\

(01| po, . . .

) ¢p)d01

Thus p(¢, @) given in (12) above indeed defines a transition density for the transition ¢ — 6.

Now let us see why the target density 7(8) is the invariant distribution for the transition
density given in (12). In order to show this we now appeal to the definition of the invariant
distribution for the density case given in (4). Thus starting with the r.h.s. of (4) with p(¢, 0)
given in (12) we get,

|, p(@.0)n(@)d¢

= 7T(0p|01, Ce

= 7T(0p|91, Ce

- ’/T(0p|91, c.

== 7T(0P|91, e

- 7r(0p|91, P

aepfl) /Rp_l [{ H 7"-(0]"017 SRR ijla ¢j+la SR ¢p)}

p
7(01|ds, - .., )T (B2, - ., 0p)| [] do

j=2
p—1
aepfl) /7?,1’—2 [{ ) ’/T(ej‘ela R 03;1, ¢j+1a SR ¢p)}

/727(91; hoy .-, qﬁp)dd)Z] ﬁ do;

j=3
[ (p-1 P
aep—l) /'R,i"*2 {j:27r(0j‘017 RN ej—lv d)j-i-la R ¢p)} ﬂ—(elv ¢37 ey d)p)] ]1;[3d¢J
- p1
79;0—1) /’R,P*?’ { g (0 |017-"a0j—1a¢j+1a'"7¢p)}
L \i=

p
A w(92|91,¢>3,...,czsp)w(el,qs?,,...,¢p)d¢3] 1] do;

=4

[ (p-1 P
"aopfl)/ _ HW(ej‘ola-"a9j71a¢j+la'"7¢p) W(01a927¢4a"'5¢p) qus]
RP—3 j=4

p—1
) [ {Hw(ojwl,...,ej1,¢j+1,...,¢p)}

[ s, e b 0700, OO0 )] 1T s,

Jj=k+1

p—1
70;0—1) /7'\7/11770 [{ H W(0j|017 R 0]'—17 d)j—f-l: R ¢p)}
j=

7T(91, .- -,9k71a¢k+1: SRR ¢p)] H d¢j

j=k+1
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- w(9p|01,...,9,,_1)/727r(91,...,ep_1,¢p)d¢,,
= 71'(01,...,91,)

showing that the target density (@) is the invariant distribution for the transition density
given in (12). Thus a sample from 7 (@) may be drawn as follows. Start with an arbitrary
initial value @y. For the n-th transition from 6, — 6,.,, follow the transition diagram
given in page 15 with ¢; replaced by 6}, and 6; replaced by 0;(,,1). For large n, 8, may be
construed as a sample from the joint target density 7(6).

5 Examples

In this section we provide a few examples of application of MCMC techniques for Bayesian
analysis of some standard statistical models.

5.1 Logistic Regression

Consider the logistic regression model for a 0-1 valued response variable Y, given a set of £
covariates X = (X1,...,Xs) = (21,...,2,) = & with P(Y = 1|X = &) modeled as

1
L+exp (=B — fixy — -+ — Brxy)
Given the data set D = {(y1,x1),..., (Yn, ®,)} consisting of n ii.d. observations on Y
together with their respective accompanying covariates, we are to draw inference about the

p = (k+1) x 1 parameter vector 8 = (B, 81, ..., Bk). According to the logistic regression
model (13), the likelihood of 3 is given by

PY=1X=2)= (13)

L(B|D) = (14)
ﬁ { 1 }yl { exp (=B — i%a — -+ — BeTir) }1%
im1 L +exp (=fo — fiwir — -+ - — Broix) 1+ exp (=fo — frwi — -+ - — BrTix)

where x; = (21, ...,2). Now let us assume that the prior for 8 is p-variate Normal with

mean g and dispersion 3 so that

1 _
7(8) x exp{ -5 (8- W= (B- )} (15)

Thus according to (1), 7(8|D), the joint posterior of B3, is proportional to the product of
(14) and (15), which cannot be recognized as any known multivariate density. Thus the only
way to tackle this posterior would be either numerical integration or some way of drawing
sample from it. We shall obviously take the second approach with the first method bordering
on computational in-feasibility. We shall use Gibbs sampling for drawing sample from this
posterior.
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In order to apply Gibbs sampling we shall need the conditional posterior of each 3; given
the rest, denoted by 7(53;|8_;), D), for j = 0,1,...,k. Note that the functional form of
7(Bj|B(—j), D) is exactly same as the the product of (14) and (15), viewed as a function of
B; with all other variables treated as known constants'. After studying (14) and (15), and
defining ;o =1Ve=1,...,n, for j =0,1,..., k this form may be abstracted as

exp (aj + bjﬁj - C?ﬁ;)
P {1+ exp (ai; + by B5) }

(BB (), D) o (16)

for some constants a;, bj, ¢;, a;;’s and b;;’s which depend on B(_;), D, p and X. The
denominator of (16) comes solely from (14), with a;; = — (50 +3k, 51%1) and b;; = —;j;
I#j

while the quadratic term involving ,3]2 in the numerator comes solely from the prior (15),

with ¢Z = 097/2, where ! = ((0¥)), and a; = — { P (1= ) (50 + Z;f;; /3l33il) } + some

terms coming in from (15) and b; = — Y7, (1 — y;)x;;+ some terms coming in from (15).

Now even the expression in the r.h.s. of (16) cannot be recognized in the form of some known
univariate density, so that we can immediately start drawing sample from it. However there
is a simple technique of drawing samples from densities which are log-concave 7.e. log of the
density is a concave function, which has been explained in the Appendix. Thus if we can
show that log W(ﬁj|,8(,j), D) is a concave function of 3; then we can appeal to this method
described in the Appendix to draw samples from 7(5;|3 (—)s D). The simplest way to show
that a function is concave, is to show that its second derivative is negative. Thus

2

0
a—ﬂ]? [log 7(B; ‘ﬁ(—j)’ D)]
82

- o l(aj + ;65— G6;) - Z;IOg{l + exp (a;; +bijﬂj)}]
. i o 20\ n bij exp (ai]— +szﬁ])
- 9B l(bj 2Cjﬁj) ; 1 + exp (aij + bi;55)
- Z_i bi; exp (aij + bijB)) 2
TS {1+ exp (ag + biB5)}

< 0

establishing that 7(8;|8_;), D) is log-concave. Thus one can now draw samples from (16)
using its log-concavity and the algorithm described in the Appendix for each j. Now since
we have a way to generate samples from the conditional posteriors of each component given
the rest, we can proceed with the Gibbs sampling as described in §4.2 towards generating
samples from 7 (B3| D), the joint posterior of 8.

! This observation has nothing to do with the logistic regression example at hand. It is true for any
multi-dimensional density 7 (61, ...,60,). Functional form of the conditional density of any 6; given 6_; =
(61,...,0;-1,6;41,...,0p) is same as w(61,...,0p), viewed as a function of only 6; with the remaining (p—1)
0;’s treated as known constants. This feature is one of the major sources of popularity of Gibbs sampling.
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5.2 Normal Mixtures

Suppose the random variable Y has density

1/2 1

. = X e {5t - ) (17

where g = (p1,...,1y) and 7 = (71,...,7;) are respective mean and precision parameters
of J Normal distributions, and @ = (my,...,7;) is the mixture probability vector with
0<m <1land Z _,m; = 1. The dens1ty in (17) is called a mixture of Normal distributions
with mixing proportlon w. Given an i.i.d. sample Y;,Y5,...,Y, on Y we are to draw
inference on (u, T, 7). The first step towards the computation of posterior is the calculation
of the likelihood of (u, T, ) given the data Y = y, which is given by

1/2
Lp,m,mly) = H lz i €XP {—%Tj(yi - uj)2}] : (18)

i=1 [j=1

Now, as is customary with Normal parameters, let us put J independent Normal-Gamma
priors with parameters (0;,;, 5;, Aj) on (u;, 7;) so that

)\ﬂ] wl/Q

V=1 5GvaT

7572 exp {—%Tj [2)\]' + 5 (1 — ‘9j)2] }] g (19)

and independently put a Dirichlet prior with parameters (o, ..., ;) on the mixing propor-
tion parameters 7, which automatically satisfies the constraints 0 < 7; < 1 and Ejzl T =1

so that
m(mw) = (E - aj) H 7ra - (20)
-1 (o) ;=
By (1), (e, T, 7|y), the posterior of (u, T, ), is proportional to the product of (18), (19)
and (20), which is a very messy expression. But this problem is circumvented as follows.
Introduce a random variable I, which takes values in {1, ..., J} such that its marginal p.m.f.
is given by 7 i.e. P(I = j)=m;forj=1,...,J, and conditionally Y| ~ N(ur,1/77). Then
it is easy to see that, according to these marginal of I and conditional of Y'|I, the marginal
density of YV is same as that is given in (17). In order to understand the physical significance
of this newly introduced random variable I, let us try to understand how observations are
generated from a mixture distribution such as the one given in (17), which is a mixture of J
Normal populations. In order to generate such an Y, we first select the index of the candidate
population, from which the final observation will be drawn, from the available J, generated
according to the p.m.f. . Once this index is generated, an observation is then drawn from
this selected population, which in this case happens to be Normal. Thus this index random
variable I, though might remain unobserved, lies at the very heart of the definition of a
mixture distribution. The I thus defined is called a latent variable or auxiliary variable or
pseudo-data, as like a parameter it remains unobserved or latent along with the observed
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data Y = y. But now if we augment each Y; with its corresponding I;, so that our new data
set becomes (Y, I), then conditional on the parameters (u, T, ), the joint distribution of
(Y, I) is given by

n 1/2
fy, ilp, 7, m) = H [ Zk\/—eXp{_%Tik(yk _:U’ik)Q}] (21)

which is same as the likelihood of (u, 7, 7) given (Y, I) = (y, 7).

But note that we are to find the posterior of (u, 7, 7) given Y = y and not (Y, I) = (y, 7).
In order to do so, we shall consider 7(u, 7,7, ¢|y), the conditional joint distribution of
(u, 7,7, I) given Y = y; generate observations from 7 (u, 7,7, Ily); and then look at the
generated values of (u,7,7) from this distribution, which in particular will constitute a
sample from 7 (u, T, m|y), the posterior of (u,7,7) given Y = y. But generating obser-
vations from 7(w, T, 7, 4|y) is now easy, as it is proportional to the product of (19), (20)
and (21) viewed as a function of (u,7,m,4) with y as fixed constants. By studying this
product we can immediately propose a Gibbs sampling scheme for generating (u,T,,1%)
from 7(w, T, 7, i|y) as follows.

Step 1: Given (u,T,7,%(—),y), where 4y = (i1,..., %1, kt1,-.-,%n) are the (n — 1)
remaining generated values of I, generate an I from {1,..., J} according to the p.m.f. r,
fork=1,....,n

Step 2: Given (u, T,1,y), generate o from a Dirichlet distribution with parameters (o +
1 if A is true

Ykt Xig=11s - - -0 0+ Xkt Xig=g]y - - - » @ + oy Xjig=2)), Where § = { 0 otherwise

Step 3: Given (u(_;), T, 7,4, y), where p_;y = (@1, -+, fhj—1, flj41, - - -, f17), generate p; from

a Normal dlstrlbutlon with mean % and precision (n; +;)7;, where n; = 3¢ Xp;, ;1
and Y = n; Z1€=1 Yk [ip=4]-
Step 4: Given (p, T(_j), ™, %,y), where 7(_;y = (T1,...,Tj—1,Tj41,-..,7s), generate 7; from

a Gamma distribution with shape parameter (n,;+1)/24 §; and scale parameter (\;+57/2)+

+9; n;7;+vi0; )2 _ 1 -
e (“9' B W) , where 55 = - 30 (e — ;)"0 1 pi—1-

The four steps detailed above provide a transition from (p,,, T, Tn, en) = (Bpi1s Trt1, Tnt1,
in41) in one step of a Gibbs iteration expressed in terms of the required conditional distri-
butions. Thus a sample from 7(u, 7,7, ¢|y) may be obtained by iterating over these Gibbs
iterations a large number of times and then choosing the final value.

Appendix: Log-Concave Densities

Many a times, as in the Logistic Regression example in §5.1, in the Gibbs or Metropolis-
Hastings sample generation schemes, we encounter densities which do not appear to belong
to any known family of probability densities so that we can readily start sampling from them
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using known algorithms e.g. (16). In such situations however as in the case of the Logistic
Regression example in §5.1, sometimes we might be able to show that the density at hand is
log-concave. Now if a univariate density is log-concave, then we can employ a simple rejection
algorithm discussed in §2.4 to obtain a sample from such densities, without requiring any
knowledge about the normalizing constant of the density. The purpose of this appendix is to
outline this method of obtaining samples from a log-concave univariate density known sans
the normalizing constant.

Suppose 7(6) be a density with 7(0) = c;f(#) where ¢; is unknown and f(6) is known
with [% f(0) df = 1/cy so that [% 7(6 df) = 1. Suppose further that h(0) = log(f(#)) is
concave or its first derivative h'(6) is a decreasing function of 6. Start with a grid of k£ points

{61, ...,0,} such that A'(6;) > 0 and h'(6;) < 0. Consider the tangent ¢;(#) of h(¢) at each
0; for j =1,...,k given by

tj(0) = h(0;) + 1'(0;)(0 — 6;).

Now for j = 1,...,k—1 consider the abscissa of the point of intersection of ¢;(#) and ¢;1,(f)
given by

(h(6;) — h(B+1)) + (05110 (0511) — 0;4(6;))
W (0;41) — B'(0) .

By concavity of h(f), h(8) < t;(0) VO € [¢;_1,¢;] Vi = 1,...,k with ¢y = —oo and
¢r = +oo. This situation is depicted in Figure 2 below.
Figure 2: Envelope Function Log—Concave Densities

¢; =

-2

-4

h(6) and t(6)
-6

-8

-12

Now define

exp(t;(0))

9(0) =

S5 exp(ti(¢))dg for 0 € [¢-1, 5)-

Then ¢(@) is a density which being piecewise exponential, is easy to sample from and V6 €

(—00.00), f(#) < cg(0) where ¢ = F_, (Z;?'_l exp(t;(¢))d¢. Thus now sampling from 7(0),
the original density of interest, can now proceed with the rejection method described in §2.4.
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