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1 Introduction

All the models that we will fit are linear models. They are called linear because they are linear
in parameters. That is for instance even if we fit a model of the type Y = By+ 51X + B, X% +¢€
with € ~ N (0, 0?), it will be called a linear model. In this model though we are expressing a
quadratic, and thus non-linear, relationship between X and Y, since the model is linear in
the model parameters 5y, 51 and s, it will be called a linear model.

The types of linear models we will deal with here will essentially fall in three categories:
Analysis of Variance (ANOVA) Models, Regression Models and Analysis of Covariance (AN-
COVA) Models. Strictly speaking all these models are basically Linear Regression models.
But we shall make the following distinctions. When all the factors are qualitative (or they
may be quantitative, but the quantitative nature of their values are not exploited in the
model) and only the nature of their effects (main effect/interactions) are considered, then
we shall refer to such models as ANOVA models. When the quantitative natures of the
factors are exploited by explicitly accounting for them as some quantitative variable in the
model equation, we shall refer to such models as regression models. And when we have
both intrinsically qualitative (and thus the numerical labels we associate with their levels
do not have any quantitative meaning) and quantitative factors then we use a special type
of regression model with so-called dummy variables, which will be referred to as ANCOVA
models.

2 ANOVA Models

Here we have a quantitative response Y and one or more qualitative factors. The different
values assumed by a quantitative factor do not explicitly appear into the model, rather
they are treated the same way as the levels of a pure qualitative factor is treated, namely
just as distinct levels of the quantitative factor. For a basic understanding of analysis of
ANOVA models we first begin with the so-called one-way analysis of variance in which we
just compare different treatment means. A treatment in general is of course a combination of
different levels of the factors under consideration, but for understanding one-way ANOVA,
it is better to think of it as an analysis of response when we have only one factor assuming
multiple levels. The factorial structure of the treatment and thus enhancement of the one-way
ANOVA analysis will be taken up next, which as a pre-requisite requires an understanding
of the one-way ANOVA.



2.1 One-Way ANOVA

As mentioned above, for the sake of simplicity, assume that we have only one factor X, which
takes on values at multiple levels, or to be concrete let X have k levels 1,2,..., k! with k > 2.
Also assume that we have n; observations on response Y for the i-th level of X or when X
takes the value 7, © = 1,2,..., k. Let these n; response value be denoted by Y;1, Yio, ..., Yii.
We shall assume that Y; ~ N(u;,0%), where Y; denotes the (population) response variable
when X = 4. Sometimes the u;’s are written as u; = p + «; with Zle o; = 0, to be
consistent with the general factorial ANOVA models of which the one-way ANOVA model
may be thought of as the one of first order. This is the probability model we put forth
for analyzing the responses Y11, Yio, ..., Y153 Y01, Yoo, .., Yon,s oo, Vi, Yao, ..., Vi, Note
that according to this formulation, it is a straight forward generalization of §3.3 of Session
2 notes to k£ Normal populations from two Normal populations. Also note that, barring
the Normality and Homoscedasticity assumption this is the most general model one can put
forth for a response for k levels of a factor X. Normality may be informally (tested) using
NPP plots of the observations for the k Y;’s. However as in Case III of §3.3 of Session 2 notes,
here also we first require to validate the homoscedasticity assumption in this k-population
problem, before we can proceed any further.

Test for Homoscedasticity (Bartlett’s Test):

The test for homoscedasticity in this general k-sample case is slightly more complex than the
corresponding F'-test in the two-sample problem. However as in Case III of §3.3 of Session

2 notes, here also we are interested in testing the null hypothesis Hy : 02 = 02 = -+ - = 03,
where V[Y;] = o2 for 1 = 1,2, ..., k. Let s? denote the sample variance in the i-th sample,
i=1,2,...,k. Thatisfori=1,2,... klet s7 = nil_l E?LI(YZ-]-—?Z-)Q, where Y; = n% Y Y
denotes the ¢-th sample mean. If the null hypothesis of homoscedasticity is true, then we shall
expect s2,53,...,52 to be all close to one another. One way to measure this closeness would

be to compare the Arithmetic Mean (AM) to the Geometric Mean (GM) of s2,s3,...,s2. Tt
is well-known that in general AM of k numbers is always > their GM, with equality following
if and only if all the £ numbers are identical to one another. Thus Bartlett’s test statistics

for checking for homoscedasticity of k¥ Normal populations is given by B = % log, (é%ﬁ),

where AM, and G M, respectively denote the AM and GM of s2,s2,...,52, n = Y% n; the

total sample size, and C' = 1 + 3(,6—1_1) ( le ﬁ — ﬁ) Note that since s? is computed
based on (n; — 1) and in general n; # ny # ... # ny the appropriate way of computing

AM;, and GM, would be using weighted means with weights n; —1,no—1,...,ng—1. Thus
i
AMS = ﬁ Zéc:l(ni — 1)82 and GMS = I:Hi'c:l (52)ni_1] n—k .

If Hy is true, AM,; and GM, would be close to each other yielding a small positive
value for B (in the extreme case of s? = s2 = .-+ = s, AM, = GM; resulting in B = 0,
which is the smallest possible value of B). Thus we should reject Hy, the null hypothesis of

homoscedasticity, for “large” values of B. The answer to this now familiar question of how

!Note that though we are using positive integers for denoting the levels of X, the values of these integers
themselves as numbers will never appear in the subsequent analysis. They are simply treated as notationally
convenient labels for distinguishing the distinct levels of X.



“large” is “large” is given by the sampling distribution of B under Hj, which can be shown
to have approzimately a x% , distribution for large samples. Thus the decision rule would
be to reject Hy if B > X%,Ll,a or p-value=P(x3 ; > B).

Suppose Hj above is not rejected. Then we are in an easy to interpret case (analogous
to Case III of §3.3 of Session 2 notes) and next we are to decide whether the means of YV
for the k levels of X are different from one another. That is we now need to test the main
ANOVA null hypothesis of interest Hy : 1 = pe = ... = pg. The logic of this test is as
explained below.

Under the ANOVA null hypothesis, Y1,Ys,...,Y} should be close to each other. For
location parameters like mean, from now on, the closeness will be measured using the stan-
dard measure called variability. Simple variability of & numbers zq, s, ...,z is given by

¥ (z; —T)? where T = % K i T x1,29,...,2; are close to each other their variability
would be small (=0 in case they are all same). However since our Y,Y5, ..., Y are measured
respectively using ny, ng, . .., ngx observations, their variability is measured using the weights
ni, No, - . nk That is the varlablhty between the group means is glven by Z (Y —Y)?
where Y 15\ n;Y; is the overall grand mean. The quantity >0, n;(Y; — Y)? is typi-

cally denoted by SSB (Sum of Squares Between groups) or SSTr (Sum of Squares due to
Treatments).

As mentioned above, under the ANOVA null hypothesis thus we should expect to see a
“small” value of SSB. For determining this “small” value we refer to the result that, under
Hy:pp = po = ... = py, 5(;9_23 ~ X%_, where o2 is the common (across the k groups and
possibly unknown for most practical cases) value of the variance 0? = 0% = 02 = ... = 0%
Thus if 0? were known we could employ a y2-test for testing the ANOVA null hypothesis
Hy: py = ps = ... = uy by rejecting Hy for SSB/o? > X%—l,l—a or by computing the
p-value=P(x%_, > SSB/c?).

However since o2 would be unknown for most practical applications, we shall need to
replace it by its estimate. We estimate this common variance o2 using the same approach
adl?pted in Case III of §3.3 of Session 2 notes. That is here also the UMVUE of o2 is given by
% = L% (n;—1)s?, which is same as the pooled variance s2 of Case III of §3.3
of Session 2 notes when k = 2. The quantity >, (n;—1)s? = 5, 37 (Y;;—Y;)? is denoted
by SSW (Sum of Squares Within groups) or SSE (Sum of Squares due to Error). This is
because each Y;; may be thought of being modeled as Y;; = y; + €;; with €;; ~ N(0,0?) and
Y, being an estimate of y;, Y;; — Y; may be thought of as the deviation from the estimated
model mean and thus a proxy for the error ¢;;.

Now as before, Sff may be shown to have a x? distribution with n — k£ d.f. Thus
replacing o2 by its estimate in the test statistic % for the ANOVA hypothesis, results in

the refined test statistic % which after dividing both the numerator and denominator

by o? results in an F statistic with £ — 1 and n — k as the respective numerator and
denominator d.f. under Hy. Thus the test of the ANOVA null hypothesis Hy : 1 = ps =
. = ugx may be described as follows. Reject Hj if SSTr/(k—1) Fy—1 n—k,1—o Or compute

SSE/(n—k)
SSTT/(k:—l))
SSE/(n—k)/

Apart from the above distributional logic, the F-statistic

p-value=P(Fy_1 5 >
SSTr/(k—1)

SSF)(n—F) Call also be under-



stood from an intuitive point of view as follows. SSTr/(k — 1) or SSB/(k — 1) gives the
average amount of variability that exists between the group means Y,Y,,...,Y}, while
SSE/(n—k) or SSW/(n—k) gives the average amount of variability that exists within each
group (variability within the i-th group consisting of the observations Y;;, Yj, ..., Y}, being
measured by 37, (Vi —Y;)?). Now if the variability between the groups is “large” compared
to the variability within the groups, then the k& sample means must be significantly different
from each other, and the question of how “large” is “large” is settled by the Fj_; ,_j distri-
bution, which is the sampling distribution of the test statistic % under Hy. leading
to the test procedure or decision rule explained above.

All these computations are typically presented using an Analysis of Variance Table as
follows:

ANOVA Table

Source of MSS =
Variation T 55 SS/D.F. F p-value
SSTr = MSTr = S51T = Faos=  P(Fy_1n
Treatment &k —1 S — k-1 T __ obsT k—1,n—k
Yini(Yi=Y)? T (Y = Y)? ST > Fobs)
B i SSE = MSE = % =
ITOr n— ni = e =
Zf:1 Zj:l(Y;j — Yi)2 n—ik Z§:1 Zj:l(yij - Yi)2
Total n—1 S5Total =

i X7 (Vi — Y)?

Example 3: In an experiment it was of interest to determine whether varying the value
of the quantitative variable Slider Mass, say sm, over its three possible levels 0.03337785,
0.03637785 and 0.03937785, changes the resulting response of Torque on Crank Slider Mech-
anism, denoted by torque. As in Example 2, we begin with the descriptive analysis of
box-plots.

Boxplot of Torque for T hree Levels of Slider Mass

Rl

Toree
5

T T T
0. 03337785 0. 03637785 0. 039937 78s

Levels of Slider Mass

As can be seen from the above plot that the torque values indeed change for changing values
of sm. This is formally justified by the following ANOVA analysis. (NPP were not made
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because though there are 9 observations on torque for each level of sm, there are only three
distinct values of torque making the NPP redundant.)

> anova(aov(torque~sm))
Analysis of Variance Table

Response: torque

Df Sum Sq Mean Sq F value Pr (>F)
sm 2 29.6704 14.8352 350.51 < 2.2e-16 *xx*
Residuals 24 1.0158 0.0423

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

2.2 Two-Factor ANOVA

Now suppose we have two factors X; and X, having respectively say s; and s, levels. Thus
we have [ = s; X s, treatments. Also suppose each of these [ treatments is replicated r
times. 2 Thus let Yj;;, denote the k-th response wits X; at level ¢ and X, at level j,
i=1,2,...,8. j=1,2,...,8 and k = 1,2,...,7. We shall assume that Y;; ~ N(p;;,0?)
with p;; having the structure pg; = p + op + B85 + 35, with 271 0 = 0, 332, 8; = 0,
i1 =0V =1,2,...,s0 and 332, v = 0 Vi = 1,2,...,s;. This is the full-factorial
model with two factors. Note that with the above constraints there are exactly s; s, many free
parameters in total which are equivalent to the s;s, many p;;’s. Thus the full-factorial model
is a general model except it writes each mean in terms of the main effects and interaction
between the two factors.

The first thing one checks is whether the two factors indeed interact with one another.
That is whether the effect of X; depends on the level of X5. This is because, in case there
are interactions, optimality of a factor in terms of one of its levels may be meaningless. One
level of X; might be the best when the level of X5 is say jo, and another level of X; might
be the best when the level of X5 is say jj. In presence of interaction, optimality is typically
expressed in terms of the best treatment or combination of levels of the two factors. On the
other hand, if there is no interaction, life is very simple and in this case one can meaningfully
talk about the best levels for each individual factor.

In terms of the model parameters the null hypothesis of no interaction effect is expressed

M1 =Y12 == Y15, =0

Vo1 =Yoo =t = Yog, = 0 )
as Hy,: ' = = = All hypotheses of such types and also for the main-

7511:7812:"':75182:0

effects in the ANOVA model are tested using F-tests. The logic of these F-tests is exactly
same as the one-way ANOVA F'-test discussed above in §2.1. We find an appropriate vari-
ability or SS (Sum of Squares), say SSHy, that one expects to be small (ideally 0) under the
null hypothesis. These SSHy/o? typically have x? distributions under the null hypothesis

21f the treatments are replicated unequal number of times, then the resulting design is called unbalanced.
We shall only deal with balanced designs here thus it assumed that each treatment has been replicated an
equal 7 number of times.



of interest, where o2 is the common inherent variability parameter of the model. That is
even if two experimental units receive the same treatment, one cannot expect to observe the
same response for the two units. This inherent variability of the experimental units (which
is assumed to be the same regardless of the kind of treatment an experimental unit receives
- the homoscedasticity assumption) is parameterized using 0. Thus for known o2 one could
do a x? test for all such hypotheses. However as o2 is never known, it is replaced by its
estimate. The UMVUE of 02 also has a standard common structure across the board for
all linear models, and thus in particular for the ANOVA models as well. Whatever way the
data may be cla551ﬁed (hke one, two or multiple way) if ¥7,Y5, ..., Y, denote the observed
responses and Yl, Yg, .. Y denote the corresponding predlcted responses using the fitted
model, 0? is always naturally estimated as SSE/e.d.f., where the Sum of Squares due to
Errors or SSE is given by SSE = Y7 (Y; — }A/;)? and e.d.f. denotes the error degrees of
freedom which invariably equals (n - the number of estimated model parameters used for
predicting the f/i’s). The reader should check that this general approach of estimating o2
gives the same estimate of 0’s that we have obtained earlier in the cases of single Normal
population (§3.2 of Session 2 notes), two Normal populations (case III of §3.2 of Session 2

notes) and k& Normal populations (§2.1 above). Using this UMVUE of o2, the hypothesis

of interest is then tested using an F'-statistics, which has the formula %ﬁj{f' and an

Fhyd.f.e.q.. distribution under Hy. As in §2.1, intuitively, the numerator of this F-statistic is
the average standard “small” amount of variability that one expects to see if Hy were true,
while what should be considered to be “small” intrinsically depends on the phenomenon
and the response variable under consideration, a reasonable value of which is given by an
estimate of the average inherent amount variability, which is precisely the denominator of
the F'-statistic, and thus if this ratio is “large” that leads to the suspicion about the truth
of Hy. The question of what is “large” is as usual answered using the sampling distribution
of the test statistics which is Fiyq.f. ¢.qa.7. in this case.

Coming back to testing the null hypothesis Hy, of no two-factor interaction, all we need
to find is the corresponding SSH,,, because in this case in general, the predicted value
of Yj;r would be given by ﬁjk = fl; = ?ij = %E;Zl Yijk, and thus SSE would be given
by >t 23 ka1 (Yijk — Y;)? and since we are thus estimating | = s;s, parameters for
obtaining Y;jk, e.d.f. would equal n — [, where n = sysor denotes the total number of
observations. Now the interaction Sum of Squares, denoted by SS(X; * X5), which is same
as the sought SSHy, is found as follows.

First ﬁnd SSTr using the [ treatments as explained in §2.1 above. Thus SSTr =
rYit Y (Y — Y)?, where Vo= L3751 5552 S Vi is the grand mean of all the n
observations Note that SSTr measures the Variability that exists in the responses due to
receiving different treatments, which are nothing but all possible combinations of levels of
the two factors X; and X,. There are three major sources of this variability namely the two
main effects of X; and X, and the interaction effect of X; x X5. The variability or S.S due to
the main effects are found again using the same argument as in §2.1. For2=1,2,...,s; let
Y, = T; Z 1 2 k=1 Yijr denote the mean response for receiving the ¢-th level of factor X,
and similarly for j = 1,2,...,s, let Y ; = % St S—1 Yijk denote the mean response for
receiving the j-th level of factor X5. Thus following the same argument as in §2.1, S\S due
to the main effects of factor X; and Xy, denoted respectively by SSX; and SSX,, are found



as SSX; =rsy 351, (Y —Y)? and SSX, =7s; Zj?:l(?_j —Y)2. Now since we already have
the variability or SS due to changing treatments in SSTr, which consists of the two main
effects and the two-factor interaction, and have measured the variability or the SS due to
the two main effects in SSX; and SSXs, the variability or SS due to interaction is found
as SS(X; *x Xy) = SSTr — SSX; — SSX,. Discussion about a number of points is in order
at this point of time.

First let us revisit the two main effect SS, SSX; and S5X,. Note that having no main
effect due to factor X is same as saying a3 = ag = --- = a,, = 0. If the null hypothesis
Hy, : a1 = a9 = --- = a5, = 0 were true, we will see little difference in the values of
Y1,Y,,...,Y, . The variability in these Y| ,Y,,..., Y, values is precisely what is being
measured in S SX 1 and thus alternatively SSX; can also be viewed as SSHy,. In particular

note that o; can be estimated as &; = Y; — Y for i = 1,2,. — 1, and thus SSHy,
can be 1nterpreted as 189 Y01, 62, Likewise for the null hypothe51s of no main effect of X,
Hog : p1 = 62 = B, = 0 its appropriate SS is given by SSHog = SSXp = rs1 3724 BJQ,
where ;=Y ; - Y.

Viewed as above our SSHM or the interaction SS should equal 73271, 372 1%2], and
¥i; should equal Y;; — 5; With Y as fi, and &; and ﬁj as above ¥ij may be

found as Yy — Y, 7 + Y Interestingly the 1nteraotlon SS(X1 * X3) obtained above as
SSTr —SSX, — SSXZ c01nc1des with 73771, 3772 1(Y -Y, — Y +Y)2

Thus now we have all the SS that is of interest for the complete analysis of the full
factorial design with two factors. To summarize, we have three hypotheses which are of
interest namely Hy,, Hog and Hy, and we have also derived the three SS that would be of
use to test these hypotheses together with the SSE. These computations are summarized

in the form of an Analysis of Variance (ANOVA) table as follows:

ANOVA Table

Source of MSS =
Variation D.F. 55 SS/D.F. F p-value
X, s —1 SSX, MSX, ﬁasi P(Fy_in > F,)
1:77\1/ISE
X 59— 1 SSX, MSX, VSX P(Fyy 1 n1 > Fp)
" MSE
-1 =
X1 x Xy (81 - ) SS(X1xXy) MS(X1*Xs) A]S(X1*X2) P(F(sl—l)(sz—l),n—l > ny)
X (82 1) —MSE
Treatment $189 — 1 SSTr MSTr f/[TSTT? P(Fysy—1n—1 > Fry)
MSE
Error n—1 SSE MSE
Total n—1 SSTotal
where SSX; = rsy 301, (Y ?) SSXZ =rs1 352, (Y ;-Y)?, SS(Xl*XQ) =ryit, v (V-
Vi =Y ;+Y), S88Tr=ry2, v2, (Y, — YY) SSE =30, 22, Sh (Vi — Y ) - and

SSTotal = zle i (Y Y)
As mentioned in the beginning of this sub-section, one first tests for Hy,. If it is not
rejected then one tests for the main effects with the F-tests as given in the ANOVA table



above. Otherwise one absorbs the SS(X; *x X5) and the corresponding d.f. into the SSE
and e.d.f. respectively and then tests for the main effects.

Note that if the replication number for each treatment (r) equals 1, SSE as given above
reduces to 0. In such situations, there is no way to test hypothesis about all the three
hypothesesHy,, Hos and Hy,. Under such circumstances, typically it is assumed that there is
no interaction and thus SS(X;*X5) and its d.f. is treated as the SSE and e.d.f. respectively
for testing for the main effects. This technique of ignoring interactions and thus computing
SSE assuming only the main effects, will be used through out while analyzing data from
fractional factorial designs.

Example 3 (Continued): Along with the variable sm now we also wish to include a sec-
ond factor called area in modeling and analysis of the response torque. area is again
a quantitative variable which is experimented with three possible values 28.27433x1079,
29.27433x107% and 30.27433x10F76. These constitute the three levels of the factor area.
That is in this experiment, s; = so = 3. Thus with the two factors sm and area, each at
three levels, there are nine treatments in total. Also here the experiment is replicated three
times for each of the nine treatment combinations, i.e. the replication number r = 3 in this
experiment. As a preliminary analysis as usual we first create a box-plot as follows:

Boxplot of Torque for Nine Levels of srm >x< area
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From this plot it appears that the nine treatment means differ from one another. To obtain
further break-up of how the main effects and the interaction of sm and area are affecting
the response torque we perform a two-way ANOVA as follows.

> anova(aov(torque~sm*area))
Analysis of Variance Table

Response: torque

Df Sum Sq Mean Sq F value Pr (>F)
sm 2 29.6704 14.8352 5.0974e+31 < 2.2e-16 **x
area 2 1.0149 0.5075 1.7437e+30 < 2.2e-16 **x*
sm:area 4 0.0009 0.0002 7.4384e+26 < 2.2e-16 **x



Residuals 18 5.239e-30 2.910e-31

Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

From this analysis it follows that all the three effects are highly significant. However more
precisely it may be stated that of the total amount of variability in torque, given by
SSTotal = 30.68622; sm alone, or its main-effect, explains about 96.6897% of this vari-
ability with SS(sm)=29.6704; area alone, or its main-effect, explains about 3.3073% of this
variability with SS(area)=1.0149; and the interaction between these two factors account for
about 0.0029% of this variability with SS(sm* area)=0.0009; with a minuscule amount of
0.0001% left unexplained or attributed to the error. These percentages are also called PCR
or Percentage Contribution Ratio, which are fairly useful statistics which may accompany
an ANOVA table. The lesson learned from this ANOVA model is that, for the subsequent
quantitative regression model of torque in terms of sm and area, we must start with both
the appropriate main effect and interaction terms. We conclude this two-factor analysis of
the response torque by studying the following interaction plots, which plots the mean level
of a response against the changing levels of one factor, while holding the level of the other
factor(s) constant.

INnteractionmn Plot—1 INnteraction Plot—2=2
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These depict the interaction as well as the quantitative nature of the effects of the two factors
sm and area on torque. Though the three sets of curves look nearly parallel in both the
plots, it is for avoiding falling into such type of subjective trap, that we need to perform
the formal Analysis of Variance as in the previous page. The ANOVA says that though the
interaction 5SS of 0.0009 is very small, it is nonetheless significant and thus should get at
least preliminary consideration while building the subsequent quantitative regression model
for torque in terms of the quantitative levels of sm and area, which were not explicitly
exploited in the ANOVA model building exercise above. Furthermore notice that the plots
also provide hints to the nature of this quantitative relationship. In particular it appears
that the effect of sm on torque is linear, while that of area is non-linear. With three distinct
levels of area, the maximal polynomial model we would be able to employ to capture this
non-linearity would be quadratic. A second option would be to try to model torque using
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other non-linear transformation of area like its logarithm or some power, which is possible
to do using even two distinct levels, though would be hard to distinguish from a linear one
in case there are only two distinct levels compared to the present case of three levels, which
just adds an additional degree of freedom.

2.3 Multi-Factor ANOVA

Here we shall not attempt to unnecessarily give the general mathematical formulation, which
though notationally complex (and hence the reason for the avoidance) is a straight-forward
generalization of the two-factor ANOVA model of §2.2 above. Except now the full-factorial
model with replication allows one to estimate the higher order interactions, the concept of
which is more general than the two-factor interaction of §2.2 and thus merits some discussion.

To understand the concept of three-factor or higher order interaction, we shall start with
a three-factor model assuming that we have a full-factorial design with (equal number of)
replications of the experiment at each treatment combination. Let X, X, and X3 denote the
three factors having s, so and s3 levels respectively. The three factor interaction X Xo* X3
explains how the two-factor interactions change with the changing level of the third factor.
To understand this concept geometrically, think of the interaction plot of X; and X, for
a fixed level of X3 which is a 2D plot as in the previous example. Now stack these 2D
interaction plots of X; and X, on each other on the third dimension for changing levels
of X3. The curves in the interaction plot of X; and X, (for a fixed level of X3) may be
non-parallel, indicating a presence of two-factor interaction between X; and X,. However
the nature of this non-parallelism itself might change for changing levels of X3. This is what
the three-factor interaction tries to capture.

In general, a k-factor interaction might be understood recursively as the nature by which
the k£ — 1-factor interaction changes for the changing levels of a k-th factor. As it can be seen
that the higher order interactions quickly loose their practical interpretablity and thus they
are better avoided in the model building process. This also has the practical advantage in the
design issues. For example, if we are willing to sacrifice the highest order interaction, we can
get away with just a full-factorial design with just 1 replication. In this case, strictly speaking
SSE = 0 if we attempt to isolate the S.S corresponding to the highest order interaction. But
since we pretend that there is no highest-order interaction, we treat the SS corresponding
to the highest order interaction as the SSE, which then enables us to check for significance
of all the lower order effects. This point has also been mentioned in the last paragraph of
§2.2 immediately preceding the example in the context of two-factor full factorial design.

Here we take it even a step further. For example consider the three factor experiment
with temperature, pressure and catalyst as the three factors for modeling the yield of a
chemical process discussed in Session 1. Table 1 of Session 1 notes give the lay-out of the
full-factorial design. This design will enable us to estimate all the two factor interactions
but the three-factor interaction will remain confounded with the SSE. This is same as the
point mentioned in the last paragraph for r = 1 with full-factorial design, namely sacrificing
the highest order interaction, which is the three-factor interaction in this example. Now
consider the design given in Table 2 of Session 1 notes. In this design we not only sacrifice
the three-factor interaction, but also all the two-factor interactions as well! But this design
(the design given in Table 2 of Session 1 notes) allows us to estimate the three main effects.
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This is the philosophy behind constructing the fractional factorial designs. That is first
decide which effects you want to estimate. Then use a minimal design which captures only
those effects, sacrificing the higher-order effects by clubbing them into SSE.

Now turning back to the problem of figuring out the SS for the higher order interactions,
we shall explain it in the context of a three-factor full-factorial design with replication with
X1, X5 and X3 as the three factors having s, s, and s3 levels. First find SSTr (asin §2.1) due
to the | = s1 X s9 X s3 treatments, denoted by SS(X; x X3 x X3). Now find SS(X;), SS(Xs),
and SS(X3) as the SS due to the main-effects of the three factors by comparing their group
means. 3 Likewise compute SS(X;xX3), SS(XoxX3) and SS(X3x X). Then the two factor
interaction SS are found as SS(X;*Xy) = SS(X; x Xy) —SS(X1) —S5(Xy), SS(XoxX3) =
SS(Xex X3)—SS5(X2)—SS(X3) and SS(X3x X1) = SS(X3x X1)—S5(X3)—SS(X;); and
the three-factor interaction SS, SS(X; *x X * X3) is found as SS(X7 * Xo % X3) = SS(X;
Xy X X3)—SS5(X1)—SS5(X2)—SS5(X3)—SS(X1%Xs)—SS(XoxX3)—SS(X3%X7). The d.f.
for SS(X1), SS(Xs), SS(X3), SS(X1%X5), SS(Xax X3), SS(X3x X1) and SS(X *x Xox X3)
are given by s;1 — 1, so — 1, 83— 1, (51 — 1)(s2 — 1), (82 — 1)(s3 — 1), (s3 — 1)(s2 — 1), and
(s1—1)(s2—1)(s3—1) respectively, totaling to s1$283—1 the d.f. of SSTr or SS(X; x Xox X3).

Example 3 (Continued): Now bring in a third factor called Crank-Mass (cm) having three
levels 0.03337785, 0.03347785, 0.03357785 like sm. Now we have a full-factorial design with
27 (=3x3x3) treatments each replicated exactly only once. This allows us to build a model
with all the three two-factor interactions but sacrificing the three-factor interaction. This is
accomplished as follows.

> anova(aov(torque”sm*area*cm-sm:area:cm))
Analysis of Variance Table

Response: torque

Df Sum Sq Mean Sq F value Pr(>F)
sm 2 29.6704 14.8352 5.3128e+31 <2e-16 **x
area 2 1.0149 0.5075 1.8174e+30 <2e-16 **x
cm 2 6.237e-31 3.119e-31 1.1168e+00 0.3734
sm:area 4 0.0009 0.0002 7.7528e+26 <2e-16 **x
sm:cm 4 1.109e-30 2.772e-31 9.9270e-01 0.4641
area:cm 4 1.264e-30 3.161e-31 1.1319e+00 0.4067
Residuals 8 2.234e-30 2.792e-31

Signif. codes: 0 ‘*x*’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

B O N~ PO

Note that the third factor cm now does not have any effect on torque and thus should be
dropped, and the model must be refitted with only sm and area as the two factors. But
this has already been done in §2.2, and that model is the one we should go by for modeling
torque in terms of sm, area and cm.

3 At this stage we shall define SS(Effect) due to any effect as follows. Whatever may be the effect, like X
or X3 x X5 x X3, suppose the effect has k levels 1,2, ..., k. Now letting Y7,Y53,...,Y,, denote the n responses,
let G=>",Y;, and for j = 1,2,...,k let n; = #{i : the Effect = j} and T; = > ithe Effect—; Y;. Then

2
SS(Effect) = Zk T C.F., where the correction factor C.F. = G

J=1 n; n

11



3 Regression Models

In this section we shall assume that we have k£ independent variables or & factors X, Xo, ..., Xk,
all of which are quantitative, and we wish to build a quantitative model for the response Y,
utilizing the (quantitative) values or the levels of the & factors. As mentioned in the Intro-
duction, we shall only build linear regression models, though they are capable of capturing
non-linear relationships between Y and the X’s as well.

One very important point that is to be noted for the regression models is that, the model
just describes the conditional distribution of Y |X;, Xy,..., X;. That is in the regression
models (or for that matter all the linear models we are concerned with here) the response Y
is assumed to be random, having (typically a Normal) p.d.f. in the population; while since
the factors are under our control or we vary their values or levels at our will, they are assumed
to be non-random; and since we are interested in the way the population of Y values change
with changing levels of X, X5,..., X;, we are concerned with modeling this conditional
distribution of Y|X;, Xs,..., X;. The models are called regression models because, the
definition of regression of Y on X, X5, ..., X} is nothing but the conditional mean of Y
given X1, X, ..., X, or notationally F[Y| X1, Xs, ..., Xi], which is a non-stochastic function
of X, Xo,..., X} called the regression function.

There are numerous theoretical motivations for studying or modeling the regression func-
tion of Y on Xy, Xy,..., X;. Simply put, the regression function is the “best” possible

predictor of Y given the factors X, Xs,..., X;. Two such theoretical results motivating
studying the regression analysis for predicting Y in terms of Xy, Xs, ..., X} are as follows.
First, if we wish to construct a predictor for Y based on Xy, Xs,..., Xy which minimizes

the mean square prediction error, then regression function comes out as the answer for such
optimal predictor. Second, if we seek a predictor for Y based on X, Xs,..., X which has
maximum correlation with the observed values of Y, then also the answer to such optimal
predictor is the regression function.

3.1 Simple Linear Regression

We begin with the simplest possible model and then move on to discussing more complex
models. Suppose we have only one X, which takes at the minimum two distinct values or has
two levels or more. In simple linear regression models we build a straight-line relationship
between such an X and the response Y. More precisely the model we wish to build is given
by Y = By + /1 X + € with € ~ N(0,0?). What this model says is that for every single X,
there is a population of Y values characterized by the conditional distribution of Y given X
denoted by Y|X. As X changes this conditional distribution of Y| X changes. But the only
thing that changes in this distribution is its mean, its family (Normal distribution) and the
variance remains unchanged as X changes. Or in other words, for a simple linear regression
model, the conditional distribution of Y| X is N(8y + 1 X, 0?).

Unlike the ANOVA model the regression model also says how the mean of Y changes
with X. The ANOVA model only says that the means of Y are different for different levels
of X. It does not precisely state how this mean changes in quantitative terms, and thus is
more general in nature. In contrast, the regression model goes a step further and attempts
to model the exact quantitative nature of this change in the mean level of Y by making it
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depend on the exact quantitative value of X. Both models however leave the family of the
distribution and variance unchanged (the homoscedasticity assumption).

For instance, the simple linear regression model says that as X changes the only thing
that changes is the mean of Y, and it changes linearly following the expression £y + 5, X. It
however also states that the variance of Y| X does not depend on X, or it remains constant
as X changes, which precisely is the assumption of homoscedasticity. It finally states that
the distribution of Y for a given value of X is also Normal with its mean and variance as
just described above. This simple linear regression model may be graphically depicted as in
the following figure:

T he Simple Linear Regression Model

Distrbutonof ¥

T T T T T T
e e] o.= o.a oO.s o.s8 1.0
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The straight line y = By + 41X in this figure depicts how the conditional mean of Y'|X
changes with X. It then goes on to show the distributions of the populations of Y values
for changing X values. These distributions (there are infinitely many of them, depending on
the possible values X can theoretically take) are all Normal, indicated by the Normal p.d.f.’s
centered around their respective mean values. And all these Normal distributions have the
same shape or the same variance o owing to the homoscedasticity assumption.

Now suppose we have n observations (Xi,Y7), (X, Ys),...,(X,,Y,) coming from the
above depicted probability model. The standard statistical problem of interest is that of
inference, which consists of estimation and hypothesis testing, about these population pa-
rameters 3, 1 and of course o2. Of these three parameters, the key parameter of interest
is 31, which ties up X with the conditional distribution of Y| X. In particular §; gives the
expected amount of change in Y for a unit increase in X.

The UMVUE of 8 is given by 3, = g—zi, where S, = ¥ (X; — X)(Y; = Y) and
Sz = Zz(':l X; — X)2. Similarly the UMVUE of 8, is given by BO =Y — 817. 4 The

4These estimators can basically be derived as follows. Consider the likelihood function L(fq, 31, 0?) of So,
B1 and o?. For any probability model the likelihood function of the population parameters is given by the
probability of observing the data at hand, for a given value of the parameter values, viewed as a function of

these parameter values. Thus for this model, L(B, 31,02) = W exp {—ﬁ Y Yi—Bo— BlX,-)Z}.

Maximum Likelihood Estimate (or MLE) of 8o, 81 and 2 may be found as those values By, B and 62
which maximizes the function L(By, 81,02) of By, B1 and 2. Now note that L(By, 31,0?) is maximized
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1y 2 _
sampling distribution of < go ) ~ N (( g(l) ) , g; l n _Z:YlXZ 1X D, where Ny, (-, )

1
denotes a bivariate Normal distribution. Thus using this sampling distribution one could

test hypothesis or construct confidence intervals for the ;s for known o?. However as usual
since o in general is unknown, this calls for first estimating this variance.

Note that o2 is the conditional variance of Y given X and the general procedure of finding
the UMVUE of 02 as discussed in the third paragraph of §2.2 still holds. Thus the numerator
of this estimate is found by SSE = Y, (V; — Y;)2, where Y; is the predicted value of ¥;
using the estimated model given by Bo + B1.X;. Note that Sy + 51.X; is also nothing but the
estimated conditional mean of Y; given X;, and thus it is no surprise that it appears as the
subtracter of the observation Y; in the estimate of the conditional variance. Now the e.d.f.
is also found from the general principle discussed in the third paragraph of §2.2, namely
(n - the number of estimated model parameters used for predicting the }A/Z-’s). Since we are
estimating 2 parameters 3y and (3, for predicting the V;’s, the required e.d.f. is given by n—2
and the UMVUE of of ¢* is found as SSE/(n — 2). A computationally efﬁ(nent formula for
computing SSE in this case is given by SSE = S, — 1Sy, where S,, = X7, (V; — V)2,

Finally, it may be shown that SfQE 2 is i ( go )
1

Using these estimates and their sampling distributions we now provide the following
inference procedure for the main parameter of interest (; as follows. The basic t-statistics

for p; is given by 5}5(51) ~ ty_o where SE(B,) = 1/62/ S, with 62 = SSE/(n — 2), and the

test of hypothesis and the confidence interval for £, are as follows:

‘ Hypotheses ‘ Fixed Significance Level Testing ‘ p-value ‘
gzl:: gi i gis Reject Hy if tops = Zg(gig < tn—2, P(tn—a < tops)
222:: gi § giz Reject Hy if tops = gg(’gi‘; > th-21-a P(tn_o > tops)
Z:;: gi ; gig Reject Hy if tops = %{E‘%g > taoias | 2P(tn_s > tops)

A 100(1 — @)% confidence interval for /3, is given by Bl + tn_g,l_a/g,@(ﬁl).

The test of H,3 above for 515 = 0 can also be viewed from an ANOVA perspective with an
F-test. One way of interpreting Hy : $; = 0 is the straight-line model is not doing a good job
or the straight-line model is basically useless. On the other hand H,3 : 51 # 0 would mean
that the straight-line model has some use, though it does not mean that it is adequate. Since
we already have a t-test for testing this hypothesis, it might seem redundant to develop an
F-test for the same. However it is instructive to consider this test in this simplest possible

for those values of By and (; which minimizes ), (¥; — 8o — BlX,')2. This minimization problem can
be viewed as searching for that straight-line through the scatter of points (X1,Y1), (X2,Y2),...,(Xn,Ys),
which minimizes the sum of vertical distances of these points from the sought straight-line. This approach
of fitting a straight-line through a scatter of points is also called the method of Ordinary Least Squares, or
OLS. Thus the OLS estimates of Sy and 1 are same as their respective MLE, both of which are found by
minimizing >, (Y; — fo — ,BlX,-)z. The solution to this problem can now be obtained by using straight-
forward calculus i.e. differentiating Y 7, (Y; — o — B1X;)? wr.t. Bo and 81 and equating them to 0 yields
B = =Y -/X
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case, where it happens to coincide with a t¢-test. This is because in the case of general
regression models, the test for the question of whether a model is useful or not (which in
the simple linear regression model is same as §; # 0 and §; = 0 respectively) is different
from testing hypothesis about a single 3, leading to an F-test. We discuss this F'-test here
in the case of simple linear regression, because the geometrical logic of this F-test is easiest
to understand here, which can then be used to understand the logic of ANOVA F-test in
the general regression models.

Thus consider the hypothesis which says that a simple linear regression model has some
use in predicting Y from an X. This under the given model is same as saying 3; # 0. This
is a point which we must establish if we are to proceed any further with the simple linear
regression model. Since this is the point we wish to prove, we must take this as the alternative
hypothesis and then the de facto null becomes 8, = 0 which states that the model is basically
useless. Now when should we say that the model has some use in predicting Y’s? If the X’s
can explain a “significant” amount of variability in the Y’s through the straight-line model,
then we should say that the model has some use. This leads to analyzing the variance of
Y and decomposing it into the constituent components. For having a geometrical feeling of
this decomposition consider the following plot:

ANOWV A of Simple Linear Regression Model

T T T T
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In the above plot the crosses indicate the observed data points (X1, Y1), (X2,Y2), ..., (X, Ya),
the circles indicate the predicted points (X1, Y7), (X2, Y2), . - (X, YA) using the straight-line
model, the solid line gives the estimated regression line Y Bo + £1X and the dot-dashed
line represents ¥ =Y.

To begin with, the Total amount of variability in ¥ can be measured by SSTotal =
Syy = S8 (Y; — Y)2. This is represented by the sum of squares of the dotted distances of
the crosses from the dot-dashed line in the above figure. Now these distances (Y; —Y), as
is evident from the figure, can be decomposed into two components - one from the observed
point to the predicted point, given by (V; — Y;), represented by the dashed lines; and the
other from the predicted point to the mean line, given by (Y; =), represented by the dotted
lines. Algebraically of course (Y; —Y) = (V; — Y,)—i— (YV; —=Y). The deviations (Y; — Y;) are the
errors of the model, which should ideally be small for the model to be useful. The deviations
(fﬁ —Y) on the other hand represents the deviations of the predicted values Yy’s. This is
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because it may be shown thatl 3", V; =Y. That is Y7, (¥; — Y)? gives the variability of
the predicted values Y7,Y3,...,Y,, and ¥, (V; — ¥;)? is the already familiar SSE. Now it
can be shown that SSTotal = SSR + SSE, where SSR =", (Y; Y)? is called the Sum
of Squares due to Regression. This is the basic ANOVA result in case of regression.

This ANOVA result may be understood as follows. As such the responses Y;,Y5,...,Y,
(the crosses in the figure) are different and the total amount of their variability may be
measured using SSTotal (sum of squares of the distances of the crosses from the dot-dashed
mean line). But why are these Y;’s different? Part of the reason is because possibly the
corresponding X;’s are different. So how much of this variability in the Y;’s can be explained
by the simple linear regression model or the linear effect of the X’s on the corresponding
Y’s? To answer this question see the kind of Y’s one would expect to see for changing X
values using the straight-line model and then measure the variability of these exrpected Y
values. These ezxpected Y values are nothing but V1,Ys,...,Y,, represented by the circles in
the figure, which naturally all line up on the regression line. These Y; values are not all same
and thus, as explained in the last paragraph, their variability is given by SSR. Thus SSR
basically gives that amount of variability in the Y¥;’s that is due to the linear effect of X on
Y. That is the regression model predicts that the Y values would be different, and also gives
the amount of variability that may be attributed due to the regression effect (which for the
simple linear regression model is same as the linear effect of the X’s on the corresponding
Y’s) as SSR. But that does not explain all the variability in Y. According to the ANOVA
result, what is left in SSTotal is nothing but SSE, which gives the amount of variability in
Y that remains unexplained in the model, which is again nothing but the variability in the
errors of the model given by Y; — Yl, Y, — Yg, R Yn, which have mean 0.

Thus if SSR is large compared to SSE we should say that the model has been successfully
able to explain the major portion of the variability in the responses, and thus we should reject

o : 81 = 0, the model is useless, in favor of H, : #; # 0, the model is useful. However
SSR and SSFE are not directly comparable because different d.f. are associated with the
two SS. For figuring out the d.f. of SSR note that SSR is the amount of variability that
exists in Yl, Y2, . Y But all these Y;’s are required to fall in a straight-line and since any
two points determlne a straight-line, though they are n numbers, fundamentally one just has
two d.f. with them. (Because as soon as you fix two of them the others automatically get
fixed.) But for measuring their variability, we have to first estimate their mean and in the
process loosing one more d.f. Thus the d.f. of SSR equal 1. That the d.f. of SSE or e.d.f.
equals n — 2, has already been discussed above. However it is illustrative to see how this
n — 2 is arising in this case. SSFE is the variability of ey, es, ..., e,, where e;, = Y; — Y; for
i=1,2,...,n. The first degree of freedom (from a totality of n e;’s) is lost due to the fact
the > ; e; = 0, and the second degree of freedom is lost because the e;’s also need to satisfy
a second constraint of > ; e;X; = 0. That is finally after adjusting for the respective d.f.

the decision rule would be, reject Hy : 1 = 0 if % is “large”.
To decide how “large” is “large”, we need to derive the sampling distribution of %.
Tt can be shown that SSR = $1S,, = $2Sze. Thus under Hy : By = 0, 558 ~ x? and in

general 50*_9—2E ~ x2_, which is independent of ﬁl Thus under H,, % ~ Fip_9 and
we have an ANOVA F-test for testing Hy : 51 = 0 against H, : $; # 0 by rejecting Hj if
%-qu,ka or computing the p-value as P(F} ,,_o > %) These computations
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are usually represented in a ANOVA table, which is omitted here for the sake of brevity. It
can be shown that the F-value obtained above would be identical to the square of the t-value
that one would obtain for the ¢-test described for testing H,3 in page 14, and this should not
come as a surprise because we already know that t2 = F} ,, and thus the two tests (t-test
and F-test) for testing Hy : f; = 0 against H, : 5; # 0 are equivalent.

Example 3 (Continued): In §2.1 we built an ANOVA model for torque for changing
levels of the quantitative factor sm and found it to be significant. However there we did
not explicitly model the value of torque in terms of the quantitative values of sm. This is
what we take up in the regression modeling. As usual we start with some graphical analysis.
However here we plot the values of torque against the quantitative values of sm as opposed
to studying the general problem of how the distribution of torque changes with changing
levels of sm in §2. This plot of a response against a quantitative factor is called scatter plot
which is as follows for the response torque and quantitative factor sm:

Scatter Plot and Linear Regression Line of torque on sm

e

b= =]

= =}
T T T T T
1.o 1.5 =2.0 2.5 3.0

sm

From this plot the relationship appears fairly linear and thus we proceed to formally fit a
simple linear Regression model for torque in terms of sm as torque=p, + fism+e, with
e ~ N(0,0?).

> 1ms<-1m(torque~as.numeric(sm))
> summary (1lms)

Call:
Im(formula = torque ~ as.numeric(sm))

Residuals:
Min 1Q Median 3Q Max
-0.1675 -0.1482 -0.1154 0.2701 0.2765

Coefficients:
Estimate Std. Error t value Pr(>ltl|)
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(Intercept) 29.89184 0.10264 291.24  <2e-16 **x
as.numeric(sm) 1.28388 0.04751 27.02 <2e-16 **x

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

Residual standard error: 0.2016 on 25 degrees of freedom
Multiple R-Squared: 0.9669, Adjusted R-squared: 0.9656
F-statistic: 730.2 on 1 and 25 DF, p-value: < 2.2e-16

Thus the estimated values of 3y and 3; are obtained as 29.89184 and 1.28388 respectively,
both of which are highly significant. The estimate of o is given by 0.2016. The R-output
also reports two quantities called R? and Adjusted-R?. While we shall discuss the concept
of Adjusted-R? in the next sub-section, let us elaborate a little bit on the concept of R? in
the simple linear regression context.

In general R? = Sgﬁﬁal. Thus R? gives the proportion of variability explained by the
model and typically it is the first key quantity one looks for in a regression output. However
in the context of simple linear regression, R? has an additional meaning. It is the square of the
correlation coefficient of the response Y and factor X, and in general a correlation coefficient
measures the degree of linear association between the two variables. ° Its numerical value
is still interpreted in terms of its square, as explained above, and in this case it says what
proportion of variability in Y can be attributed to the linear effect of X. For the example
at hand, thus it says that 96.69% of the variability in torque can be explained away due to
the linear effect of sm, which is quite large.

Though an R? value of 0.9669 is quite large, the immediate question is, is it significant?
Or in other words is the straight line model doing a useful job? This is answered in terms
of the ANOVA F-test, which is the last line of the bare minimum output produced by R.
It gives an F-value of 730.2 with 1 and 25 d.f. with a p-value of nearly 0. Thus the model
is indeed useful. It may be noted that F-statistic given by % may be alternatively

written in terms of R? as = %. Thus the ANOVA F'-test is really same as checking

for the significance of R?, which in a nut-shell describes the usefulness of the straight-line
model. For the sake of completeness the ANOVA table is presented below.

> anova(lms)
Analysis of Variance Table

Response: torque

Df Sum Sq Mean Sq F value Pr (>F)
as.numeric(sm) 1 29.6704 29.6704 730.22 < 2.2e-16 *x*x
Residuals 25 1.0158 0.0406

Signif. codes: 0 “*xx’ 0.001 “**’ 0.01 ‘x’ 0.05 “.” 0.1 ¢ ’ 1

Note that through-out we are very cautiously using the term “usefulness” of the model
instead of “adequacy” or “goodness of fit” of the model, while describing the ANOVA F-

5The correlation coefficient between two variables X and Y, typically denoted by rxy is given by S““’S
zzOyy
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test. Though many times, albeit erroneously or being a little more harsh we may add very
callously, the ANOVA F-test is called by such names. All the F-test does is check whether
the model as an approximation may serve a useful purpose. It never says anything about
the adequacy of the model, nor does it say anything about how good the fit is. True it says
whether the fit has been useful or not, but not how good the fit is. But this is one of the
major challenges of the regression model building, namely to assess whether the model has
been adequate or how good the fit is. This is because, if not, then we have to revise and
rebuild the model. These issues are taken up next.

Model Diagnostics:

The way the adequacy or goodness of fit of a model is judged is essentially by checking
whether the model assumptions have been met. For example the simple linear regression
model Y = Sy + 51X + € with € ~ N(0,0?) states that once the model has been fitted the
error or residual part computed using eq,es,...,e, where e; = Y; — Y, =Y, — 30 — BlX,-
should behave as though they are coming from a N(0,0?) population. This statement has
to be observed a little more carefully. This sates

1. ey, es,...,e, do not have anything to do with the X’s any more.

2. eq,eo,...,e, are homoscedastic, and

3. eq,€s,...,e, have a Normal distribution.

There is also the assumption of ey, es, ..., e, being independent. But in our applications

here, in the context of AutoDOE, they will be independent by design and thus we will not
bother about this assumption. In many applications the data are observed in a temporal
or spatial sequence making consecutive observations auto-correlated. But here the runs in
the CAE tool are independent and thus checking for any dependence on the run sequence is
basically redundant.

However careful attention must be paid to the above three assumptions. The first as-
sumption loosely translates to the issue of when the residuals are plotted against the X’s
they should not exhibit any pattern. If there is a distinct way by which the residuals are
changing with the X’s, that means there is still some residual pattern left, which the model
has not been able to capture adequately, and thus there is scope for improvement of the
model in terms of the way we let the X enter into the model. Non-linear effects of X on Y
are thus typically diagnosed from such a plot for a straight-line model.

The plot of residuals against the X’s also allows one to keep an eye on the second
assumption of homoscedasticity. If the residuals exhibit unequal spread of values for changing
levels of the X’s then the homoscedasticity assumption is a suspect. Typically such situations
arise together with the problem of Normality of the residuals, which can be checked using the
NPP of residuals. If that is the case i.e. both assumptions two and three are problematic,
then the issue is typically attempted to settle using a non-linear transformation of Y. The
standard transformation one uses is some power or logarithm of Y. Note that this is different
from allowing X to enter the model in a non-linear fashion. Otherwise in the very rare case
of satisfactory NPP but heteroscedastic residuals, there is no other option but to model the
o? using the X’s.

There is a third plot apart from the residual plot, defined below, and the NPP of the
residuals, which is also useful. This is the box and whisker’s plot of the residuals. This plot
not only gives a rough check for Normality, and a feel for the distribution of the residuals,
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it is also an indispensable tool for detecting outliers. An outlier in our AutoDOE context
might help us capture tabulation errors or mis-specification of factor levels or any other
unintentional error which might have crept into the runs.

Though we discussed plotting the residuals against the X’s, in standard terms, this is

not called the residual plot. In residual plots one plots the residuals ey, eq, ..., e, against
the fitted values Y7, Y5,...,Y,, instead of X, X,,...,X,. Note however that in the simple
linear regression model, there is a perfect linear relatlonshlp between Xi, X,,..., X, and

Vi,Ys,...,Y,, and thus both the plots would look identical. The plot of re&duals against
the ﬁtted values is the preferred way of plotting because it is easily generalizable in the
context of multiple X’s. A second point to note is it is usually desirable to deal with the
standardized residuals say sei, ses, ..., se, instead of the raw residuals ey, e, ..., e,, where
se; = %. This is because we know that if the regression assumptions are satisfied we shall
expect to see values within +3 for the standardized residuals, while no such bound can as
such be given for the raw residuals.
These plots are constructed for the example 3 and are as follows:

Residual Plot NP P of Residuals Boxplot of Residuals
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the NPP is clearly bad. However since our methods are least sensitive to the Normahty
assumption compared to the others, we accept the simple linear Regression model for torque
in terms of sm and proceed to the next topic.

3.2 Multiple Regression

Here we wish to model Y using multiple X’s like X, X5, ..., X;. This is a straight-forward
generalization of the simple linear Regression model of §3.1 where we model Y with the
multiple X’s using a linear model. More precisely, Y is modeled as Y = [y + 51.X: +
BoXo + -+ + B Xy + € with € ~ N(0,0%). Like in the case of simple linear regression, here
also we are modeling the conditional distribution of Y, but this time given multiple Xs,
X1, Xo, ..., X} instead of a single X. The conditional distribution of Y| X, X5, ..., X} in
the multiple regression model is assumed to be N(8y+ 8, X1 + B2 X2+ - - - + B X, 0%). Other
than the mean structure, all other assumptions and concepts like a population of Y values
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for given values of X, X,, ..., X}, their homoscedasticity and Normality etc. are exactly
carried through as before in the multiple regression model as well. In the simple linear
regression model, the conditional mean of Y depended on a single X through a straight-line
relationship. Here also the conditional mean of Y depend on the multiple X’s, X7, Xy,..., X}
through a linear relationship.

Though this linear structure of the mean may look like a very restrictive model, it will
be so only if all these X;’s are thought to be different factors. Multiple regression models
allow one to build non-linear relationships between the X’s and the Y as well. For example,
suppose we have a single X but its relationship with Y appears to be cubic. Such a cubic
model may be built using multiple regression technique with X; = X, X, = X2 and X3 = X3.
Likewise if there are two X’s X; and X5, and they seem to affect Y in a quadratic manner,
such a quadratic model may be built using multiple regression technique with X; = Xj,
X2 = XQ, X3 = X1X2, X4 = X12 and X5 = X22

The complexity of such polynomial relationships that one can model using multiple re-
gression, however is limited to the underlying design of experiment used for collecting ob-
servations on the X’s and Y, which among other things determine the number of levels the
different X;’s have been experimented with, the number of runs, the kinds of effects that
have been allowed to estimate and so on. For example if in an experiment there are two
factors X; and X, and each one of them has been allowed to assume only two possible values,
then one cannot fit a full quadratic model in two variables, as discussed above. If there are
replications at each treatment combination in this experiment, then the maximal model one
can fit is Y = By + 51 X1 + B2 Xo + B3X1X5 + ¢, allowing additional room only for modeling
the interaction effect. For being able to fit a cubic model, the factor must be allowed to
assume at least four different levels. For the design given in Table 2 of Session 1 notes, the
maximal model one would be able to fit is Y = By + 81 X1 + B2 X2 + 53X3, where X1, X5, X3
(a 0-1 valued dummy variable) and Y denote the temperature, pressure, catalyst and the
chemical yield respectively, with no room for even accommodating the error term e!

Thus assume that we have multiple X’s X, Xy,..., X}, where some X;’s may be a
function of some other X;’s. Now suppose we have n observations on the response Y, with the
i-th observation denoted by Y;, ¢ = 1,2,...,n, for the independent variables X1, Xs,..., X}
taking values X1, X;9, ..., Xjx respectively. Then according to the multiple regression model,
Y, = B+ BiXi + BoXio + -+ B Xip + ¢ for © = 1,2,...,n. This model for all the n
observations may be written in matrix notation as Y = X + €, where for p =k + 1,

Y [ 1 X Xig --- le e X ] go €1
Y, 1 Xo Xop - X2j e Xog 5; €2
Yn><1 = Y; anp = 1 Xil Xi2 . Xij L. sz /Bpxl = ﬁ €Enx1 = €
Yn L 1 an Xn2 o Xn] e Xnk | ﬁ:]c €n

The model errors € ~ N, (0, 0%I,), where N, (u,X) denotes a n-variate Normal distribution
with mean vector g and variance-covariance matrix 3, 0 is an n x 1 vector of all 0’s and I,
denotes the n x n identity matrix.
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Now the statistical problem of multiple regression analysis is exactly same as discussed
in §3.1, except now for a more general model. Thus all we need to do is just jot down the

formula and discuss only those concepts that are different in the multiple regression setting.
The UMVUE of 8, which may be derived from the MLE or equivalently OLS consid-

. . -1

eration as before, denoted by 3 is given by 8 = (X x ) X?Y . Furthermore it may be
. . -1

shown that the sampling distribution of 8 is given by 8 ~ N, (ﬁ, o? (XTX) ) The fitted

or predicted values of the observations Y is given by Y = X, ,B, so that the SSFE in this
case is obtained as SSE = ¥, (V; - Y)? = (Y - Y)'(Y -Y) =Y (I, - H)Y, where

-1
the so-called n x n hat-matrix H = X (X Tx ) X7, Here also it may be shown that
SSE

~ X2 _p and is independent of B. Note that the e.d.f. equals n — p because one need

to estimate p = k + 1 3;’s for obtaining the predicted values Y. Thus the UMVUE of o2 is
given by 62 = s> = MSE = SSE/(n — p).

With the above point estimates and sampling distributions of the model parameters 8
and o2, we are now ready to discuss the inferential issues. First consider inference about
/3’ —Bj
SE(B;)
where SE (B;) gives the estimated standard error of f; as s> x {(j+1,j+1)-th element of the

an individual g; for j = 0,1,2,...,k. The relevant quantity here is given by ==L ~ ¢,_,

1
(X T'x ) matrix}, which can be used to test hypothesis or construct confidence intervals
for the individual 3;’s. The test statistics for testing Hy : 8; = B;0, where typically 3;o = 0, is
/3’] /Bjo

SE(B;)
tobs| > tn—p,1—a/2 against the three three kinds of alternatives H,y : B; < Bjo, Haz : B > Bjo

or Hy : B; # Bjo respectively, or by computing the respective p-values as P(tn,—p < tobs),
P(tp—p > tobs) or 2P(t,—p > |tobs|) Similarly a 100(1-«)% confidence interval for 5; would
be given by 5] Etp_pi- Q/QSE(B])

Inference about individual 3;’s are important and interesting for various reasons. pf;
essentially gives the partial effect of X; on Y in presence of the other X;/,’s. Thus for example
in a quadratic model Y = 3, + 81X + 5,X? + € a test for Hy : 5, = 0 against H, : 85 # 0
yields the result about whether a quadratic term is useful in modeling Y, over and above
the inclusion of a linear term. In the model for a chemical yield Y = By + 51 X1 + B2 X5 + ¢,
where X; and X, denote the temperature (say in ° Kelvin) and pressure respectively, 3
gives the ezpected increment in yield for increasing the temperature by 1° Kelvin for any
given pressure level. If there were an interaction term ([3.X; X5 in the model, then of course
this ezxpected increment would have also depended on the pressure level X5 and would have
been given by 31 + 83 X5, ® but that is not what is being discussed here for explaining the
partial effect. 5, in the model Y = [y + 51X + B2 X5 + € says how X is affecting Y when X,
is also there in the model. This effect in general is different from how as such X affects YV,
which can be estimated using a model for Y involving X; alone and with no other variable,
and is called the marginal effect. However fortunately, for orthogonal designs, as in the case
of AutoDOE, these two are the same for different factors, and thus we need not worry too

given by t,,s = with the decision rule of rejecting Hy if 545 < 15— p o, Lobs > tn-pi1—a OF

6Such linear functions of B3, say I73, thus also arise naturally, inference for which may be drawn using
'g-1"pB
VA (XTX) T

the quantity ~typ_p.
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much about the marginal and partial effect issues. However for one factor, when we decide
between a higher and lower order model, as in the case of linear versus quadratic example
above, it should be borne in mind that what we are really interested in is this partial effect of
higher order terms over and above the presence of the lower order terms, and not the effect
of the higher order terms as such, which we are hardly interested in, and the ¢-test would
precisely test for this partial effect.

Next let us look at the issue of usefulness of the model. This issue was investigated in
terms of the ANOVA F-test in §3.1. Here also we shall do the same. But here for the model
Y =61+ 51 X1+ BoXo + - - - + Br Xk + € the model being useless is expressed in terms of the
null hypothesis Hy : f; = B3 = --- = B = 0. Note that for £ = 1 as in §3.1, this is same
as Hy : f; = 0, which is what we tested there. And since there was only one X in §3.1,
numerically the ANOVA F-test was equivalent to the two-sided ¢-test for H,3. But in general
the question of usefulness of the model is assessed in terms of the totality of all the terms

present in the model. This in this case translates to the hypothesis 8 = o =--- =8, =0
which states that the model is not serving any useful purpose.
The logic of the ANOVA F-test for testing Hy : /1 = P2 = -+ = [ = 0 is exactly

same as in §3.1. The total amount of variability in the observed Y values are given by
SSTotal = Syy = X1 (Yi—Y)2 =Y (I, — 1J,)Y, where J, is an n X n matrix of all
1’s, which has in total n — 1 d.f. The amount of variability that is explained by the model is
given by the amount of variability in the fitted or predicted values Yl, Yg, ey Y, or Y. As
in §3.1 here also it can be shown that the mean of these Y values £ > | V; =Y. Thus the
amount of variability in the observed Y values Y that has been explamed by the model or
Sum of Squares due to Regression is given by SSR = >" (V; - Y)? = YT (H — LJ,)Y.
Since Y values must lie in a k-dimensional plane totally there are £ + 1 d.f. in the Y
values, but one d.f. is lost for having to estimate their mean in order to compute the S5,
resulting in k£ d.f. for the SSR. The amount of variability that remains unexplained is
measured by the Variability in the residual values e, where e = Y — Y. Now again it
can be shown that 1y lei = 0 resulting in the same SSE formula obtained above as
SSE =3Y" €2 (Y Y)(Y -Y)=YT(I, — H)Y. That the e.d.f. equals n — p has
already been discussed above. As in §3.1 an alternative way of interpreting this n — p d.f.
associated with the errors e can be understood by noting the number of constraints that must
be satisfied by e, which are p many, given by > ;e; =0and 31", ,X;; =0Vj =1,2,...,k,
or in other words the errors and all the n values of all the X}’s are uncorrelated. These
computations and the F-test are typically presented in the following tabular form:

ANOVA Table

Source of - py b SS MSS = SS/D.F. F p-value
Variation
Regression k=p—1 SSR MSR = SSR/k f;}gsf P(Fin_p > Fops)
MSE
Error n—op SSE  MSE = SSE/(n—p)
Total n—1 SSTotal
As before R? = ségi?ﬁal =1- %, which provides the proportion of variability in Y

that has been explained by the model and provides a single-statistic descriptive measure of
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how good a job the model is being able to do. The F-statistic can be expressed in terms R?
as F' = u_ﬁ% and thus the F-test can be equivalently treated as a test of significance
for the population value of R?. If R? is small the overall performance of the model is poor,
and a large value of R? indicates that a major proportion of variability has been explained by
the model and thus the model is doing a decent job or is useful. R? is also called the Multiple
Correlation Coefficient of Y and X, Xs,..., Xi. It is called a correlation coefficient because
the square of the correlation coefficient between ¥ and Y computed using the formula
provided in the footnote of page 18 coincides with R2.

R? however has the undesirable property of showing a larger value for a larger model.
That is for example, the R? of the model Y = By + 31X + B, X? + ¢ will always be larger than
the model Y = Sy + 31X + € for the same set of data, no matter what the true relationship
between X and Y may be - be it linear, quadratic or something else. This is because adding
additional terms always reduces the SSE. This problem is circumvented by considering a
slightly different measure called Adjusted-R?* which is given by 1 — 7622 — = 1— %
This quantity also takes the number of additional terms that has been thrown into the model
into account and thus is a slightly better measure for assessing the usefulness of a model.

Example 3 (Continued): At this stage I detected that it was a “bad” example in the sense
that the response torque was exactly identical for three different levels of the factor cm for all
the 9 combination of levels of sm and area. Thus I pruned it down to 9 observations for the
9 combination of levels of sm and area. Thus we have a full factorial experiment with two
factors each at three levels with no replication. This will not allow us to illustrate modeling
interaction, but since there are two factors and three levels each, this gives us ample scope
to demonstrate multiple regression with non-linear terms. To begin with we shall re-do the
basic ANOVA model and then proceed. In the sequel t denotes the 9 (distinct) values of
torque, s denotes (numerical) sm and a denotes (numerical) area.

> anova(aov(t~as.factor(s)+as.factor(a)))
Analysis of Variance Table

Response: t

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(s) 2 9.8901 4.9451 68528.2 8.517e-10 **x*
as.factor(a) 2 0.3383 0.1692 2344.1 7.267e-07 *x*x
Residuals 4 0.0003 0.0001

Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

Thus we see both the main effects are significant. Thus we begin by fitting the maximal
model possible and then drop the insignificant terms as we go along. Since s and a takes
values at three levels, it is possible to fit quadratic models for both the variables. Thus letting
s2 and a2 respectively denote s? and a?, the maximal model is given by t=0 + f1s+3282+
Bza+pia2+e€.

> 1ms2a2<-1m(t~s+s2+a+a2)
> summary (1lms2a2)
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Call:
Im(formula =t ~ s + 82 + a + a2)

Residuals:
1 2 3 4 5 6 7
9.644e-03 -2.222e-05 -9.622e-03 -6.422e-03 1.111e-05 6.411e-03 -3.222e-03
8 9

1.111e-05 3.211e-03

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.583e+02 5.219e+00 30.335 7.03e-06 **x

s 4.222e+02 4.857e+01  8.692 0.000965 *x*x

82 7.963e+01 6.674e+02 0.119 0.910781

a -9.879e+06 3.517e+05 -28.090 9.56e-06 **x

a2 1.724e+11 6.007e+09 28.704 8.77e-06 **x

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

Residual standard error: 0.008495 on 4 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: 0.9999
F-statistic: 3.544e+04 on 4 and 4 DF, p-value: 2.389e-09

In this model we see that the quadratic term involving s2 is insignificant while that involving
a2 is. This is not surprising because of the following scatter-plots of the values of t against
s and a.

Scatter Plot of torgque on sMm Scatter Plot of torgque on area
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Now we refit the model by dropping the insignificant terms as follows.

> Ilmsa2<-1lm(t~s+a+a2)
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> summary(lmsa2)

Call:
Im(formula =t ~ s + a + a2)

Residuals:
1 2 3 4 5 6 7
0.0098833 -0.0005000 -0.0093833 -0.0061833 -0.0004667 0.0066500 -0.0029833
8 9

-0.0004667 0.0034500

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.582e+02 4.610e+00 34.32 3.95e-07 *xx

s 4.280e+02 1.036e+00 413.17 1.58e-12 *x*x
a -9.879%e+06 3.151e+05 -31.35 6.20e-07 **x
a2 1.724e+11 5.382e+09  32.03 5.57e-07 **x
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

Residual standard error: 0.007611 on 5 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: 1
F-statistic: 5.885e+04 on 3 and 5 DF, p-value: 8.694e-12

> anova(lmsa2)
Analysis of Variance Table

Response: t

Df Sum Sq Mean Sq F value Pr (>F)
] 1 9.8901 9.8901 170712.9 1.576e-12 x**x
a 10.2789 0.2789  4813.3 1.178e-08 x*x*x
a2 1 0.0595 0.0595 1026.2 5.567e-07 *x**
Residuals 5 0.0003 0.0001
Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘%> 0.05 ‘.” 0.1 ¢ > 1

This model now looks satisfactory modulo the check on model diagnostics. Towards this
end we conduct a residual analysis by constructing the three diagnostic plots involving the
standardized residuals of the above linear model 1msa2 as in §3.2. These plots are given in
the next page. As the plots look quite satisfactory we finally take the above model as the
final multiple regression model for torque in terms of sm and area.
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4 ANCOVA Models

In contrast to the approach of §3, here all the factors or independent variables or the X’s
are not assumed to be quantitative. There might be some pure qualitative factors assuming
some discrete levels, which may be labeled using some numbers but it would be meaning-
less to let these labeled numbers themselves appear in the model equation. The way such
qualitative variables are handled are using the so-called dummy variable approach. In this
approach, the different levels of a qualitative factor are handled using 0-1 valued variables.
For example if a factor X assumes two possible levels say A and B, then to distinguish these
1 if X assumes the value A

. L If
0 otherwise
X assumes three levels A, B and C then to distinguish between these three levels we need

two dummy variables Dy and D, as follows. Let Dy = { L if X assumes the value A and

two levels we introduce a dummy variable D as D =

0 otherwise

D, = L if X ASSUIHES the value B . Then by looking at the combination of values of
0 otherwise

(D1, Dy) we will know which level of X are we talking about. For instance, a (1,0) value for

(Dy, Dy) would indicate that X has level A, a (0,1) value for (Dy, Dy) would indicate that

X has level B, while a (0,0) value for (D;, D,) would indicate that X has level C.

Next by keeping the quantitative variables as they are, one proceeds to build a multiple
regression model with the quantitative variables and the dummy variables introduced for
distinguishing the levels of the qualitative factors. Though the basic procedure of model
building and the inference techniques are exactly same as in multiple regression of §3.2,
there are some subtle nuances in terms of interpretation of the parameters in ANCOVA
models. Instead of attempting to address the general nature of these models, we shall learn
this model using a case study example, which will bring out all the concepts that are required
for building ANCOVA models. The extra theoretical developments will be introduced as and
when required while discussing the case study.
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Example 2 (Continued): In this problem we are interested in modeling Load on column
joint of steering, say Y in terms of three quantitative factors Tilt Mass, say X, IC Steering,
say X, and Mass Torso, say X3 and two qualitative factors Column Stroke Stiffness, say
X4, and Lower Column Revo joint Stiffness, say X5. X; and X, have been experimented
with three levels while X3 have been experimented with five levels. The qualitative factor
X, assumes three possible levels while X, assumes two possible levels. Thus in total there are
3x3x5Hx3x2=270 treatments. A full factorial design with no replication was employed
for the experimentation.

Thus we begin with a maximal ANOVA model, which in this case will allow us to estimate
all interaction effects up to and including the fourth order. The only interaction we shall
not be able to estimate is the five-factor interaction. The result of fitting such an ANOVA
model is given below:

x1 *kk
x2 *
x3 %k k
x4 %k k
x5 *
x1:x2

x1:x3

x2:x3 %k k
x1:x4 %k k
x2:x4 %k k
x3:x4 %ok k
x1:x5 *kk
x2:x5

x3:xb

x4:x5 ¥k k
x1:x2:x3

x1:x2:x4

x1:x3:x4

x2:x3:x4 %k k
x1:x2:x5

x1:x3:x5 *
x2:x3:x5

x1:x4:x5 %k k
x2:x4:x5

x3:x4:x5

x1:x2:x3:x4

x1:x2:x3:x5 %k K
x1:x2:x4:x5

x1:x3:x4:x5

x2:x3:x4:x5

Residuals

Signif. codes: 0 ‘*x*’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1
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From this maximal model we see that all the main effects are significant, and six out of ten
two-factor interactions are also significant. Though three out of the ten three-factor inter-
actions and one four-factor interaction is significant, to keep things tractable, interpretable
and for the purpose of illustration, we shall demonstrate the example using terms only up
to two-factor interactions. This is no loss of generality because the higher order terms can
be accommodated exactly in the same fashion following the method described below.

Now while considering models with just two-factor interactions, it would not be wise to
consider all the terms which came out to be significant in the maximal model above. This
is because if we ignore third and higher order interactions, the SS corresponding to these
effects get absorbed in the SSE which might result in a larger MSE. Since the M SS of the
main effects and two-factor interactions remain unchanged in a smaller model, this might
result in some insignificant effects in a model with only two-factor interactions. Thus we
refit a model with just two factor interactions as follows.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr (>F)
x1 2 2.490 1.245 53.2527 < 2.2e-16  **x
x2 2 0.002 0.001 0.0402 0.9605760
x3 4 0.024 0.006 0.2587 0.9041197
x4 2 46.641 23.320 997 .6705 < 2.2e-16  **x*
x5 1 0.001 0.001 0.0365 0.8486565
x1:x2 4 2.015e-04 5.037e-05 0.0022 0.9999907
x1:x3 8 3.437e-04  4.296e-05 0.0018 1.0000000
x1:x4 4 0.159 0.040 1.7052 0.1499971
x1:x5 2 6.522 3.261 139.5150 < 2.2e-16 *okok
x2:x3 8 0.138 0.017 0.7372 0.6585230
x2:x4 4 0.111 0.028 1.1851 0.3183484
x2:x5 2 2.222e-06 1.111e-06  4.753e-05 0.9999525
x3:x4 8 0.654 0.082 3.4955 0.0008176  *xx
x3:x5 4 8.370e-05 2.093e-05 0.0009 0.9999984
x4:x5 2 0.036 0.018 0.7805 0.4595046
Residuals 212 4.955 0.023
Signif. codes: 0 “*xx’ 0.001 ‘x*’ 0.01 ‘x> 0.05 “.” 0.1 ¢ ’ 1

From this analysis we see that the interaction between only X; and X5 and X3 and X, are
significant, while the main-effects are significant only for X; and X,. This somewhat reduces
the search space of all possible models, among which we are to choose the best one. First,
since X5 does not figure in any of the main-effect or interaction terms we may safely drop
it for further analysis. Note that even for the (proper) maximal model with terms up to
four-factor interaction, the level of significance of the main-effect of Xy was small compared
to others. Thus indeed there would be no loss in dropping X5 from further consideration for
the ANCOVA model building for Y. Second, we shall restrict ourselves in considering the
interaction terms involving only X; & X5 and X5 & X,. Third, though the main-effects of
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X3 and X5 are not significant, their interactions with other factors are. Thus we should not
ignore them in building the ANCOVA model for Y. If their main-effect terms turn out to
be insignificant in the process then be it, but they must receive our initial consideration.
As mentioned in the beginning of this section, the qualitative variables X, and X5 will
now be handled using 0-1 valued dummy variables. Since X, has three levels, -1, 0 and 1
1 if X, assumes the value — 1

we need two dummies to handle it. Thus define D_; = )
0 otherwise

1 if X, assumes the value 1

0 otherwise . Likewise for two possible levels of X5, -1 and 0

and D1 = {

1 if X5 assumes the value — 1
0 otherwise

at three possible levels. Thus the maximal model may have a quadratic term in X;. Similarly
since the quantitative variable X3 has value at five possible levels, the maximal model may
have up to fourth degree terms in X3. Accounting for the two-factor interactions between X;
& X5 and X3 & X4 the maximal model may thus be written as Y = By+ 1 X1+ B X2+ B33 X3+
BaX3+ B5X3 + Be X5+ BrD_1 + Bs D1 + Bo(DX5) + Bro(DX5) X1 + 11 (DX5) XE + froD_1 X5+
Bi3D_1X3 + Pr1aD_1 X3+ B1sD_1 X5 + P16 D1 X5 + B17 D1 X3 + B1sD1 X3 + B19D1 X5 +e. What
this ANCOVA model does is it depicts different kinds of regression relationships between Y
and the two quantitative variables X; and X3 for different combinations of levels of the two
qualitative variables X, and X5, which has been expressed in terms of their corresponding
dummies D_;, D; and (DX)s. Thus for the six possible combinations of levels of X, and
X5 the regression relationships of Y on X; and X3 for this maximal model are as follows:

define (DX)5 = { . The quantitative variable X; has value

| X4 | X5 | Regression of Y on X; and X; |
0 |0 Y = Bo+BiX1+ BeXP+ B3 X5+ Bu X5 + B X5 + B X5 + e
Y = (Bo+Bo)+ (Br+ Bro) X1+ (B2 + Br1) X? + B3 X5 + Bu Xz + B X3

0 -1 4

1o [Y = GotB0) T BXi+ BX] + (Bs + i) Xs + (Bu + Bua) X3
+(Bs + B14) X3 + (Be + B15) X5 + €

1|4 Y = (Bo+Br+ Bo) + (61 + Bro) X1 + (B2 + B11) X7 + (B3 + Bi2) X3

+(Ba+ B13) X2 + (Bs + B14) X3 + (B6 + B15) X5 + €

1 o Y = (Bo+ Bs) + B1X1 + 5o X7 + (B5 + Bis) X3 + (B + Bi7) X3
+(Bs + B18) X5 + (Bs + Pio) X3 + €

1 Y = (Bo+ Bs+ Bo) + (b1 + Bro) X1 + (B2 + Br1) X7 + (Bs + B16) X3
+(Bs + Bi7) X2 + (85 + B18) X3 + (B6 + Bro) X3 + €

Now we are to build an appropriate model containing only the significant terms from the
above model involving 19 terms. There are several ways by which one may approach this
problem. They may be broadly classified as automated methods and intuitive methods. I
shall demonstrate only the automated approach. However among the automated methods
also there are several approaches. Out of these I shall demonstrate only one called the
stepwise regression, which has been implemented in the AutoDOE. Again among stepwise
regression procedures also there are two primary choices called backward elimination and
forward selection. In backward elimination we start with the maximal model and then keep
dropping terms one at a time, starting with the one which is least significant, till we arrive at
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a model with all terms being significant. This is the most popular choice of model selection
and has been implemented in the AutoDOE. In contrast, in the forward selection we start
with the smallest possible model with no X’s and then keep adding terms one at a time,
starting with the one which is most significant, till we arrive at a model with all terms being
significant with no more addition of significant terms being possible. This usually involves
going back a step at a time checking for the significance of the old terms in presence of
the newly added term and thus adds complexity in the search procedure. Thus we shall
not discuss the forward selection procedure. Moreover since we are starting with a maximal
model, by first fitting an ANOVA model, the natural choice of stepwise regression in our case
would be the backward elimination. There is a third more full-proof approach of considering
all possible models, which for the example at hand would involve fitting 2'° = 524, 288 or
more than half a million models, which by no means is a practical solution and thus is not
even attempted.
By fitting the full model involving all the 19 terms we get

Im(formula = y ~ x1 + x12 + x3 + x32 + x33 + x34 + d_1 + d1 +
dx5 + dxbxl + dxbx12 + d_1x3 + d_1x32 + d_1x33 + d_1x34 +
d1x3 + d1x32 + d1x33 + di1x34)

Residuals:

Min 1Q Median 3Q Max
-0.314815 -0.108843 -0.003370 0.102185 0.384185
Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 19.4880568 20.3843980 0.956 0.340

x1 -1.1804444 0.1084696 -10.883 <2e-16 **x
x12 0.3237778 0.0268393 12.064 <2e-16 **x
x3 3.7130822 7.4625786  0.498 0.619

x32 -0.5293156 1.0062004 -0.526 0.599

x33 0.0334429 0.0592677 0.564 0.573

x34 -0.0007849 0.0012879 -0.609 0.543

d_1 4.7007370 28.8275784  0.163 0.871

d1i 20.2162256 28.8275784 0.701 0.484

dx5 -2.2128889 0.1350880 -16.381  <2e-16 ***
dx5x1 2.6431111 0.1533991 17.230 <2e-16 **x
dxb5x12 -0.6593333 0.0379564 -17.371 <2e-16 **x
d_1x3 -1.6616910 10.5536798 -0.157 0.875
d_1x32 0.2359875 1.4229822 0.166 0.868
d_1x33 -0.0148235 0.0838171 -0.177 0.860
d_1x34 0.0003455 0.0018214  0.190 0.850
d1x3 -7.3528866 10.5536798 -0.697 0.487
d1x32 1.0580657 1.4229822 0.744 0.458
d1x33 -0.0674336 0.0838171 -0.805 0.422
dix34 0.0015944 0.0018214 0.875 0.382
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1
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Residual standard error: 0.147 on 250 degrees of freedom
Multiple R-Squared: 0.9125, Adjusted R-squared: 0.9058
F-statistic: 137.2 on 19 and 250 DF, p-value: < 2.2e-16

with D_; X3 being the least significant. Thus we next fit a model by just dropping this term
as follows:

Im(formula =y ~ x1 + x12 + x3 + x32 + x33 + x34 + d_1 + d1 +
dx5 + dxbxl + dxbx12 + d_1x32 + d_1x33 + d_1x34 + di1x3 +
d1x32 + d1x33 + di1x34)

Residuals:
Min 1Q Median 3Q Max
-0.314815 -0.108476 -0.003132 0.101762 0.384185

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 2.176e+01 1.439e+01 1.512 0.132

x1 -1.180e+00 1.083e-01 -10.904  <2e-16 **x
x12 3.238e-01 2.679e-02 12.087 <2e-16 *x*x
x3 2.882e+00 5.267e+00  0.547 0.585

x32 -4.173e-01 7.104e-01 -0.587 0.557

x33 2.686e-02 4.190e-02 0.641 0.522

x34 -6.420e-04 9.125e-04 -0.704 0.482

d_1 1.639e-01 8.826e-01 0.186 0.853

d1i 1.795e+01 2.492e+01  0.720 0.472

dx5 -2.213e+00 1.348e-01 -16.413 <2e-16 **x
dx5x1 2.643e+00 1.531e-01 17.264  <2e-16 **x
dxb5x12 -6.593e-01 3.788e-02 -17.4056 <2e-16 **x
d_1x32 1.204e-02 4.337e-02 0.278 0.782
d_1x33 -1.650e-03 5.041e-03 -0.327 0.744
d_1x34 5.989e-05 1.612e-04 0.371 0.711
d1x3 -6.522e+00 9.122e¢+00 -0.715 0.475
d1x32 9.461e-01 1.230e+00 0.769 0.443
d1x33 -6.085e-02 7.249e-02 -0.839 0.402
d1x34 1.452e-03 1.576e-03 0.921 0.358
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%> 0.05 ‘.” 0.1 ¢ > 1

Residual standard error: 0.1467 on 251 degrees of freedom
Multiple R-Squared: 0.9125, Adjusted R-squared: 0.9062
F-statistic: 145.4 on 18 and 251 DF, p-value: < 2.2e-16

Now the least significant term is D_; and hence it gets dropped at this step yielding the
next model
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Im(formula =y ~ x1 + x12 + x3 + x32 + x33 + x34 + dl + dx5 +
dxbx1 + dxbx12 + d_1x32 + d_1x33 + d_1x34 + dix3 + dix32 +
d1x33 + di1x34)

Residuals:
Min 1Q Median 3Q Max
-0.314815 -0.106367 -0.002037 0.101818 0.384185

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.184e+01 1.436e+01 1.521 0.129528

x1 -1.180e+00 1.081e-01 -10.925 < 2e-16 **x
x12 3.238e-01 2.674e-02 12.110 < 2e-16 **x
x3 2.882e+00 5.256e+00 0.548 0.583957

x32 -4.213e-01 7.088e-01 -0.594 0.552723

x33 2.732e-02 4.175e-02 0.654 0.513503

x34 -6.566e-04 9.073e-04 -0.724 0.469924

d1 1.787e+01 2.487e+01 0.718 0.473179

dx5 -2.213e+00 1.346e-01 -16.445 < 2e-16 **x
dx5x1 2.643e+00 1.528e-01 17.297 < 2e-16 **x
dxb5x12 -6.593e-01 3.781e-02 -17.438 < 2e-16 *x*x
d_1x32 2.004e-02 5.310e-03 3.773 0.000201 *x*x
d_1x33 -2.572e-03 8.792e-04 -2.926 0.003752 *x
d_1x34 8.909e-05 3.562e-05 2.502 0.012999
d1x3 -6.522e+00 9.104e+00 -0.716 0.474436
d1x32 9.501e-01 1.228e+00 0.774 0.439691
d1x33 -6.131e-02 7.231e-02 -0.848 0.397320
di1x34 1.466e-03 1.571e-03 0.933 0.351680
Signif. codes: 0 “*xx’ 0.001 ‘x*’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ * 1

Residual standard error: 0.1464 on 252 degrees of freedom
Multiple R-Squared: 0.9125, Adjusted R-squared: 0.9066
F-statistic: 154.5 on 17 and 252 DF, p-value: < 2.2e-16

Proceeding in this manner we arrive at a model with all significant terms in just six steps,
with o = 0.05 which is as follows:

Im(formula = y ~ x1 + x12 + x33 + x34 + dxb + dxbxl + dxbx12 +
d_1x32 + d_1x33 + d_1x34 + d1x32 + d1x33 + d1x34)

Residuals:
Min 1Q Median 3Q Max
-0.347168 -0.108510 -0.003795 0.106093 0.387807

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.906e+01 1.210e-01 240.125 < 2e-16 **x

x1 -1.180e+00 1.081e-01 -10.923 < 2e-16 **x
x12 3.238e-01 2.674e-02 12.108 < 2e-16 **x
x33 6.007e-04 1.927e-04  3.117 0.002039 x*x
x34 -3.663e-05 1.177e-05 -3.112 0.002067 *x
dx5 -2.213e+00 1.346e-01 -16.441 < 2e-16 ***
dx5x1 2.643e+00 1.528e-01 17.293 < 2e-16 *%*x
dxb5x12 -6.593e-01 3.782e-02 -17.434 < 2e-16 **x
d_1x32 1.855e-02 5.253e-03  3.532 0.000489 **x
d_1x33 -2.328e-03 8.698e-04 -2.676 0.007926 x*x*
d_1x34 7.932e-05 3.524e-05 2.251 0.025266 *
d1x32 7.251e-02 5.253e-03 13.804 < 2e-16 *x*x*
d1x33 -9.693e-03 8.698e-04 -11.143 < 2e-16 **x
d1x34 3.458e-04 3.524e-05 9.811 < 2e-16 *x*x
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

Residual standard error: 0.1465 on 256 degrees of freedom
Multiple R-Squared: 0.911, Adjusted R-squared: 0.9065
F-statistic: 201.7 on 13 and 256 DF, p-value: < 2.2e-16

To have a final appreciation of this model we begin with the scatter plots of the quantitative
variables for different levels of X, and X5. In these plots the three levels of Xy, -1, 0 and
+1 have been indicated by the plotting symbols -’, ‘0’ and ‘+’ respectively.
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Scatter Plot of v onmn X3

for >X<X5=cC

Scatter Plot of v on X3 for X5=—
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These plots show the non-linearity in Y for changing values of X; and X3 as well as the
interaction between X; & X5 and X3 & X —4. Next we perform a residual analysis to check
whether the model assumptions have been satisfied through the following plots.

Residual Plot NP P of Residuals Boxplot of Residuals
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Not only the plots look very satisfactory, they also indeed survive the objective statistical
tests for homoscedasticity (Bartlett’s test) and Normality as well. Thus they satisfy all the
regression assumptions and thus we may feel satisfied with the above model and stop our
model building effort here to proceed with the next stage of optimization using the above
model.

Transformations:

However for the purpose of demonstration we shall take up the issue of what to do in case
the model assumptions are not satisfied. The nature of non-linearity that is to be considered

in the independent variable in our case is chiefly determined by the levels of the quantitative
factors and thus there is no need to discuss that issue any further. Furthermore as mentioned
in point 1 of page 19 for §3.1, this issue very much depends on the nature of the residual
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plot, which indeed looks so good in this example that we cannot take it up any further in
that direction.

However sometimes one may need to transform the response Y to satisfy the homoscedas-
ticity and Normality assumptions. A general class of these transformations is called the Box-
Cox transformation where one tries to model YAA’I instead of Y, where the optimal value of
A is determined by its likelihood function. A non-zero value of A gives a power (and hence
sometimes Box-Cox transformations are also called power transformation) of Y while for
A = 0 it is same as considering log(Y). The likelihood of A of the Box-Cox transformation
for the above data set with the final model is as follows:

Determining Optimal Box—Cox Transformation

ogLkelood

T T T T T
—s —s — —= o

Ilambda

which says that an “optimal” value of this transformation would be -4, or it advises us to
model 1/Y* instead of Y itself. The summary of this model is as follows:

Im(formula = y~(-4) ~ x1 + x12 + x33 + x34 + dx5 + dxbx1 + dxbx12 +
d_1x32 + d_1x33 + d_1x34 + d1x32 + d1x33 + d1x34)

Residuals:
Min 1Q Median 3Q Max
-6.345e-08 -2.109e-08 -4.538e-10 1.953e-08 7.095e-08

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.409e-06 2.385e-08 59.085 < 2e-16 **x

x1 2.350e-07 2.129e-08 11.038 < 2e-16 **x
x12 -6.446e-08 5.268e-09 -12.234 < 2e-16 **x
x33 -1.284e-10 3.797e-11 -3.381 0.000835 *x*x
x34 7.827e-12 2.319e-12  3.375 0.000853 *x*x
dx5 4.397e-07 2.652e-08 16.580 < 2e-16 *x*x
dx5x1 -5.234e-07 3.011e-08 -17.383 < 2e-16 **x
dx5x12 1.303e-07 7.451e-09 17.495 < 2e-16 **x
d_1x32 -4.024e-09 1.035e-09 -3.888 0.000129 x*x*x
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d_1x33 5.087e-10 1.714e-10 2.969 0.003275 x*x

d_1x34 -1.743e-11 6.944e-12 -2.511 0.012662 *

d1x32 -1.430e-08 1.035e-09 -13.819 < 2e-16 **x

d1x33 1.910e-09 1.714e-10 11.148 < 2e-16 **x

di1x34 -6.813e-11 6.944e-12 -9.812 < 2e-16 **x

Signif. codes: 0 “*xx’ 0.001 “*x*’ 0.01 ‘x’ 0.05 “.” 0.1 ¢ ’ 1

Residual standard error: 2.886e-08 on 256 degrees of freedom

Multiple R-Squared: 0.9111, Adjusted R-squared: 0.9066
F-statistic: 201.9 on 13 and 256 DF, p-value: < 2.2e-16

The residual analysis of this transformed model is as follows:

Sandazed Resiidls

This model is indeed an improvement over the previous model,
provement is nominal, because the original model in terms of Y
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all the required assumptions.

NP P of Residuals
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Boxplot of Residuals
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though the amount of im-
itself had already satisfied




