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1 Introduction

Though our ultimate goal is to get into formal ANOVA and Regression model building as
soon as possible, to get there, we first need to have a basic understanding of the underlying
probability theory and the related probability distributions and basic elements of statistical
inference, which encompasses estimation and hypothesis testing. Of these two elements of
statistical inference, we only need to have good understanding of hypothesis testing, because
selection between alternative models or testing for significance of a factor are all formulated as
hypothesis testing problems. However we need to have a passing understanding of estimation
theory as well, though the focus of this notes will rest upon the mechanics and the logic
behind hypothesis testing.

We begin with some very basics of probability theory, but quickly move on to only those
issues and models which are relevant to us for AutoDOE. We take up the issues pertaining
to statistical inference next.

2 Probability Models

Statistical model building problems are typically concerned with developing relationships be-
tween a set of variables based on observations on these variables. Though these relationships
are built empirically based on the observations, conceptually they attempt to capture the
kind of relationships these variables might have in an abstract “population”, which consists
of the totality of all possible values the variables might assume, of which the observed values
are just a part of the whole or a sample. Now the values (of the variables under consider-
ation) occur in the population according to certain frequency, meaning some values occur
more often than other. Or in other words when we sample the values through observations,
some values would be more likely to occur than others. This frequency law of the values in
the population is modeled in terms of a probability distribution.

That is a probability distribution is nothing but a model, which describes how the val-
ues of a variable are distributed in a population. More generally a model ! specifies how
different variables are (probabilistically) related to one another in the population. Since in
the population, the totality of all possible values of a variable is handled by its probability
distribution, a model in general specifies how the values of different variables under consid-
eration are jointly distributed in the population. That is a (probability) model is equivalent

'We will not try to nitpick with the terms “probability model” or “statistical model” because they are used
interchangeably. A model to us is always a probability model. But a probability model cannot be written
down without any observations, it necessarily has to be empirically built from a sample of observations.
This process of building a probability model from empirical statistical observations, called a sample, using
statistical techniques is called statistical model building, and as a result the final model is also referred to
as a statistical model.



to the specification of a (joint) probability distribution of the variables under consideration.
A probability model is a model in the population, or in other words, it tries to describe what
is happening 7.e. how values are distributed and the relationship between values of variables,
in the totality of all possible values in the population.

The way the probability distribution of a variable is specified, depends on the nature of
the values the variable can take. They essentially fall in one of the two categories - discrete
or continuous. Number of times a component fails within a specified time period, number
of times a driver applies brakes during a 10 km journey, number of piston movements in
a second etc. are examples of discrete variables; while mileage (number of km per litre),
reaction time of a driver, average speed during a journey etc. are examples of continuous
variables.

2.1 Discrete Probability Models

In general, for a discrete variable its probability distribution is specified using its probability
mass function (p.m.f.) as follows. Let the discrete variable X takes values {zg,z1, %2, ...}
Then its p.m.f. p(z) gives P(X = z). That is for a discrete variable its p.m.f. can be simply
viewed as a sequence {pg, p1,p2,...} such that 0 < p;, <1Vi=10,1,2... and >°,p; = 1,
with the interpretation that p; gives P(X = z;). Alternatively many times, actually more
often than not, the p.m.f. p(x) is expressed as a formula with a few parameters (instead of
a(n) (in)finite sequence), in which case they are referred to as discrete probability models.
For example, if probability of Head in a single toss of a coin is p, the coin is tossed n times
and X denotes the number of Heads in these n tosses then the p.m.f. of X can be expressed

as p(z) = ( Z )px(l —p)"* forz = 0,1,2,...,n (Binomial model); if the coin is tossed

till a Head appears and X denotes the number of Tails before the Head then the p.m.f. of
X can be expressed as p(z) = (1 — p)®p for z = 0,1,2,... (Geometric Model); if the coin
is tossed till n Heads appear and X denotes the total number of Tails in this experiment,
n+§_ 1 p"(1—p)* forx =0,1,2,...
(Negative Binomial model); the number of times a driver applies brakes during a journey,
say X, may be reasonably modeled using the p.m.f. p(z) = e *\?/z!, x = 0,1,2,..., for
some A > 0, called the parameter of the Poisson model.

then the p.m.f. of X can be expressed as p(z) = (

2.2 Continuous Probability Models

In the AutoDOE context, all the probability models or probability distributions we will be
concerned with are continuous. Probability distributions of continuous variables are not
specified in terms of its p.m.f. Because a variable is called continuous if P(X = z) = 0
Vz - that is its definition! Thus by definition, for a continuous variable its p.m.f. p(z)
is hopelessly identically equal to 0. A new calculus-based devise is utilized to define the
probability distribution of a continuous variable, which is called probability density function
or p.d.f..

The p.d.f. of a continuous variable X is defined as f(z) = limg; 0 ﬂK}Z;—”d‘EZ. Or
in other words f(z)dz may be interpreted as the probability of X taking value very close



to x in a dr neighborhood. Probabilities of X taking values in some set A may then be
computed as [, f(x)dz. In general any function f(z) which is non-negative i.e f(z) > 0 Vz
with a total area underneath it as 1 i.e. [2° f(z)dz = 1 is a bona fide p.d.f. Mean and
variance of continuous variable X is computed using its p.d.f. as u = E[X] = [TX zf(z)dx
and 0® = V[X] = E[(X — p)?] = [ZZ(z — p)*f(2)dz = [13 2 f(z)dz — p* = E[X?] — p?
respectively.

Continuous probability models are typically specified in terms of its p.d.f. For example an
exponential distribution with parameter )\, denoted by exp(\), is defined as that distribution
which has a p.d.f. Ae™*? for z > 0. An exp(])) distribution has mean 1/ and variance 1/\%.
Some typical exp(\) p.d.f. are depicted below:

P.D.F. of exp(0.5) distn. P.D.F. of exp(l) distn. P.D.F. of exp(2) distn.
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The most important distribution in statistical applications is called Normal or Gaussian
distribution. This is because most of the standard continuous variables (at least approx-
imately) tend to follow this distribution. (And hence the name “Normal”). Furthermore
whenever we measure something using a device typically it will be contaminated with some
measurement errors, which arise from innumerable many sources. Theoretical considerations
of the structure of such measurement errors also lead to Normally distributed measurements.
Because of its importance and utility in the modeling exercise in AutoDOE, we devote a little
bit of time in studying the Normal distribution.

2.3 Normal or Gaussian Distribution

The Normal distribution is completely specified or characterized by two parameters (as
exponential has one parameter \) namely its mean p and variance o2. Modeling with Normal
distribution typically concentrates on the structure of ;2 and sometimes 2. For instance the
different types of models that were discussed in the first session, basically are specifications
of mean u of a response which is assumed to have a Normal distribution.

The p.d.f. of a Normal distribution with mean p and variance o2 is given by
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which has a symmetric bell shape, which is also popularly known as the so-called bell-curve.
Such a Normal distribution with mean p and variance o%is denoted by X ~ N(u,oc?).
The mean parameter p dictates where the main hump or the major probability mass of
the distribution would be located, while the variance parameter o? determines how this
probability mass should be spread about or distributed along the x-axis. Larger the value of
0% more diffused the probability mass would be. The effects of changing the values of these
two parameters on the resulting shapes of the p.d.f. given in equation (1) are depicted in
the following figure:

Different Normal Distributions

We will need to compute probabilities and quantiles for a N(u,o?) distribution while
performing hypothesis testing. Thus it would be helpful to know that if X ~ N(u,o?),
then Z = £ ~ N(0,1), a Normal distribution with mean 0 and variance 1. The N(0,1)
distribution is called the standard Normal distribution for which probability tables are avail-
able (this is because unlike the exponential distribution the indefinite integral of the Normal
distribution cannot be obtained in a closed form). Any required probability or quantile com-
putation of an arbitrary N(u,o?) distribution is performed by first formulating the problem
in terms of the standard Normal distribution and then solving it using the standard Normal
probability tables.

3 Statistical Inference

As mentioned in §1, statistical inference deals with estimation and hypothesis testing about
unknown population parameters, given a set of observations on the variable whose popula-
tion behavior we want to study or model. As seen in §2 above, population parameters are
nothing but some quantities which appear in the underlying (population) probability dis-
tribution of the variable under consideration as unknown constants, like the p of Binomial,
Geometric or Negative Binomial distribution, or A of the Poisson or exponential model or
(i, 0%) of the Normal probability model of §2.3. Since we will almost exclusively deal with the
Normal probability model, here we will only discuss the inferential techniques or the meth-



ods pertaining to the Normal distribution, instead of trying to invoke general mathematical
statistics principles and results of statistical inference.

Thus suppose we have n observations Y7, Y5, ..., Y, on some response of interest Y. Life
would be simple if we can somehow convince ourselves that the underlying population from
which these observations are coming is Normal, because the inferential techniques for the
Normal distribution is very standard and fairly easy to implement. Once the Normality is
established, we would like to estimate and test hypothesis about the unknown parameters u
and o?. Thus we shall first address the issue of validating the assumption of the (underlying)
Normal distribution. This leads to what is called Normal Probability Plots (NPP). Note that
NPP has also been implemented in the final diagnostic module of AutoDOE and thus is a
very important topic of discussion.

3.1 Normal Probability Plots

The problem here is to validate the assumption that the observations Yi,Y5,... Y, are
coming from some N(u,0?) population. One naive way to attempt to solve this problem
would be to construct a histogram of of these observations and then visually check whether
it roughly resembles a symmetric bell-shape or not. But this approach is fraught with danger
for numerous reasons. First, histogram of majority of variables indeed exhibit a hump in
the middle values with decaying frequency in the tails. Second, there are numerous other
distributions (probability models) which have this bell-shape, as we shall see shortly. Third,
we humans are not very good at judging the nature of curvature (quadratic versus cubic
for instance). These considerations compel us to somehow “linearize” the problem, so that
we can inspect whether something follows a straight-line or not, which we humans are very
good at.

For any variable Y its cumulative distribution function or c.d.f.is defined as F(y) =
P(Y < vy). ? Note that if Y is discrete taking values {yo,v1,...} with p.m.f. {po,p1,...},
F(y) = Yiy<ypi; and if Y is continuous with p.d.f. f(y), F(y) = [?, f(t)dt. Though
in general the (population) c.d.f. of a variable Y remains unknown, given n observations
V1,Ys,...,Y, on Y its c.d.f. may be estimated as F(y) = #{i : ¥; < y}/n without making
any assumption about the underlying probability model whatsoever. 2 (y) is called the
empirical c.d.f. of Y.

Now if Y has a N(u,o?) distribution, its c.d.f. F(y) is given by F(y) = ®(%£), where

O(z) = [Z o(t)dt and ¢(t) = \/%e’%tz, which is same as equation (1) with y = 0 and
0% = 1, the standard Normal p.d.f. Note that ¢(-) and thus ®(-) are known functions i.e.
they do not depend on p and ¢ and thus may be computed at least numerically.

Though we do not know F(y), if we replace it by its estimate the empirical c.d.f. F (y)
in the above relationship F(y) = ®(%%), we get that y = i+ c®~! (F(y)) where ®71(-) is
the inverse function of ®(-) (the inverse exists because ®(-) is strictly increasing and thus
one-to-one). This gives a linear relationship of the Y;’s with the corresponding ®~! (F (Y;)) ’s.

2C.d.f’s play a very important role in calculation of probabilities. For example P(Y > a) can be calculated
as 1 — F(a), Pla<Y <b) = F(b) — F(a), P(Y <y) = F(y—), the left hand limit of F(-) at y etc. As
a matter of fact, probability tables of standard distributions like the standard Normal mentioned above, or
Binomial or Poisson etc. all tabulates nothing but the c.d.f. of the corresponding variables.



That is since F(y) has been estimated by F (y), without any assumption, and if F'(y) indeed
has a Normal form, if we plot the ®* (F (Yi))’s (called theoretical quantiles) in the z-axis
(abscissa) and Y;’s (called sample quantiles) the y-axis (ordinate) we should get a straight
line.

This plot of sample quantiles against the theoretical quantiles is called the Normal Prob-
ability Plot. If the points in the plot appear to be in a straight-line then with the above logic
it may seem reasonable to assume that the observations Y7, Y, ... Y, are coming from some
N(u,c?) population, otherwise they are not. Two prototype NPP are provided in the fol-
lowing figure, where in the first case there is no reason to suspect the Normality assumption,
while in the second case we should reject the Normality assumption.
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3.2 Inference for a Single Normal Population

Suppose after the preliminary NPP analysis we are now willing to assume that Y7, Y5,...,Y,
are coming from some N (u,0?) population. The next issue is to estimate the values of the
unknown population parameters (i, 0?). The estimate for the population mean y is obvious,
which is given by the sample mean ¥ = % » Y. It can also be shown that the sample
mean Y is indeed the “best” estimate of i in any sense you may put forward a criterion
for being the “best”. The estimate of the population variance o2 is however slightly less
intuitive. Its estimate is given by the so-called sample variance s2_; = == Y7, (Y; — V)%
Note that the divisor is n — 1 and not n. To understand the reasoning behind this estimate,
we have to first understand the very important concept of sampling distributions, which
will be used very critically from now on.

In classical statistics, as we are doing here, the optimality of any method is judged in
terms of its repeated use over different samples from the same population. That is if we
use the same method over and over again for all possible samples that we can draw from
a population, the method would be called “good” if its average performance is satisfactory
over this repeated sampling.



To put things in a little bit more concrete terms consider the sample mean Y as an
estimate of the population mean u. Though for a given population its mean p is something
fixed (but unknown), we cannot expect to get the same value of the sample mean Y for all
different possible samples that we can draw from the population. However we can consider
and theoretically derive how Y would behave over repeated sampling for all possible samples
in terms of its probability distribution. This probability distribution of ¥ over all possible
samples is called the sampling distribution of the sample mean Y. If the sample is drawn
from a N (i, 0?) population it may be shown that the sampling distribution of Y is N (p, %2)

Noticing a couple of features of this sampling distribution of Y should convince us as to
why Y is a good estimate of p. First note that the mean of the sampling distribution of Y
is p1, which coincides with the parameter that Y is supposed to estimate. This property of
an estimate viz. the mean of its sampling distribution coinciding with the parameter it is
trying to estimate, is called unbiasedness. Loosely speaking, if an estimate is unbiased, on
an average it hits the target. Thus Y is an unbiased estimate of x. Second the variance of
the sampling distribution of Y is 02 /n, which means that as the sample size n increases the
variance of Y decreases, and as the mean of the sampling distribution of Y is j, this means
that for large sample with very high probability the value of Y will be concentrated around
1.

Coming back to the estimation of population variance o2 from where we left it, it may be
shown that the sampling distribution of (n — 1)s2_, /0? has a so called x? distribution with
(n — 1) degrees of freedom (d.f.). ® The mean and variance of a x2 variable are v and 2v
respectively. From this result it may be seen that s2_, is an unbiased estimated of o2 and
thus is the preferred estimate over s2 = L Y7 | (¥; —Y)?, which slightly underestimates o2.

After settling the estimation issue we next turn our attention towards hypothesis testing.
Methodologically the sampling distributions are again used for this purpose. However the
logic and the related concepts of hypothesis testing is somewhat subtle which requires special

3Definition: If Z, Z», . . ., Z, are independent and identically distributed N (0, 1) variables, X = Y7, Z2
is said to have a x? distribution with v d.f. and we write X ~ 2.
Typical p.d.f.’s of some x? distributions are plotted in the following figures:

P .D.F. of xTdistn. P .D.F. of X3odistn. P LD .. of XToodistr.
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care and attention to follow. First consider hypothesis testing about the population mean
1. To see how the situation of hypothesis testing arises let us consider a concrete example
as follows.

Example 1: Suppose a safety feature has been implemented in a vehicle design which will
work if the reaction time of the driver is less than 2 seconds. Otherwise the feature would
be useless. Thus experiments were conducted to measure the reaction times of 10 drivers
which are as follows:

2.01, 1.54, 1.95, 2.10, 1.64, 1.75, 1.51, 1.84, 1.64, 1.45

Furthermore from similar experiments it may be assumed that the variance of the reaction
times 02 = 0.04. The question we need to answer is, is it worth implementing the safety
feature?

This is a typical hypothesis testing problem. Here we formulate the problem as follows.
The first question to answer is can we assume that the reaction times of the drivers has a
Normal distribution? For this we prepare the NPP as follows:

Normal Probability Plot of Reaction Times
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Since the plot looks reasonably linear, we next proceed to model the reaction times with
a N(u,0.02?) distribution. Now with this formulation, we may say that if u < 2 the safety
feature will be useful for more than 50% of the drivers in the population and thus would
be worth it. Thus based on the sampled data we are to decide whether it is reasonable to
assume that p < 2 or not.

The point we want prove is u < 2 and this becomes what is called our alternative
hypothesis or H,. Unless the data says otherwise we will go with the status quo of the
situation which will say that the average reaction times of drivers is at least 2 minutes. This
gives us our null hypothesis Hy. That is for this problem the next stage of formulation is to
decide upon the pair of hypotheses

Hy: p>2
H,: p<2

To decide upon one of the competing hypotheses regarding population mean, it is only
but natural to look at the sample mean. The basic intuitive idea behind deciding on one



hypothesis over the other is to look at the value of the sample mean Y and see to which
region does it fall - Hy or H,? That is loosely speaking one should reject Hy if Y is small
compared to 2 and accept it otherwise. However care must be taken while trying to do this.
The regions specified in the hypothesis pertain to that of a population parameter while the
value of Y we get, which is 1.743 in this example, is specific to this sample at hand. For
the same problem if we had another sample of 10 drivers we would have possibly observed
a different sample mean. To resolve this issue of all possible values of the sample means
we must look at its sampling distribution. But its sampling distribution, which we know is
N(u,0.22/10) depends on the unknown value of u, about which we are trying to test the
hypotheses. Thus even if Hy is true there is a possibility for Y to be less than 2 and similarly
there is a possibility for Y to be more than 2 even when H, is true.

Thus though we decide to reject Hy for Y small compared to 2, there is a possibility of
rejecting the right hypothesis. Similarly there is the possibility of wrongly accepting H,.
This dilemma is overcome by considering the probabilities of committing these two types of
errors. The former i.e. Rejecting Hy, when it is true is called Type-1 error, and the later
i.e. Accepting Hy when it is false is called Type-II error. In classical hypothesis testing, as
mentioned above, since the null hypothesis is always taken to be the status quo of a situation
i.e. assuming it to be true by default unless proven otherwise, and the alternative is a point
one wants to prove, Type-I error is deemed to be more expensive than the Type-II error.
Thus the optimal decision is taken by fixing a low value for the probability of committing a
Type-I error, called o. 4

That is the optimum decision rule would be: Reject Hy if Y < Y, where Y, is found by
fixing an a. With this decision rule P(Type-I Error) = P(Y < Y |u > 2) and P(Type-II
Error) = P(Y > Y. |u < 2). Note that the “probability” is coming in Type-I/1I error because
the decision rule is stochastic or the occurrence of the event Y < Y, (or its compliment)
depends on the sampling distribution of Y.

Thus now we are finally ready to carry out the hypothesis test. To do this, only thing
remaining is to find Y, the critical value of Y, which is found as a solution to the equation
P(Y <Y /u > 2) = a . However note that though there is no unique solution to this
problem (because the left hand side assumes different values for different values of p > 2)
the left hand side of the equation attains a maximum when g = 2. Thus if we fix some small
value of « and solve this equation for x4 = 2, which incidentally has a unique solution, the
P(Type-I Error) for other values p in Hy can only be less than «. Thus the desired Y, is
determined by solving P(Y < Y.|u = 2) = « for a given value of o. Or in other words in
the present problem, Y. is nothing but the a-th quantile of a N(u,0.22/10) distribution.

As mentioned in the last paragraph of §2.3, a-th quantile of an arbitrary N(u,o?) dis-
tribution can be found as u + oz,, where z, is the a-th quantile of a standard Normal
distribution. Some standard quantiles of the standard Normal distribution is plotted in the
following figure:

480 what happens to the probability of committing a Type-II error? Among all possible decision rules
or tests, which has the same level of «, that test is said to be most powerful which has the minimum
probability of Type-II error. For example, for the problem of Normal mean p, it may also be interpreted as
the population median and a test may be formulated in terms of the population median. However it can be
shown that tests based on the mean has the least probability of Type-II error or most powerful and thus the
preferred way of testing.



Some Standard Quantiles of Standard Normal Distn.
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Thus for o« = 0.01, 0.05 and 0.1, Y, may be computed as 1.853, 1.896 and 1.919 respec-
tively. That is for the given problem we will Reject Hy even for o = 0.01. Instead of stating
the rule of rejecting Hy directly in terms Y. it is customary to state it in the following
standardized form: Reject Hy if Z = Y740 < 2, where yq is the boundary value specified in

a/vn
the null hypothesis and o is the (supposedly known) population variance. For the numerical
example at hand, the observed value of Z called Zypserveq equals 223=2 — _4 063 and since

0.2/vn
it is less than -2.326 (=Zj 1) our decision would be to reject Hy.

A slightly different but equivalent (and the preferred) way of expressing the same result is
in terms of what is called the “observed significance level” or p-value. In general p-value gives
the probability of observing a data as “extreme” as the one at hand, under Hy, where what is
“extreme” is determined by the alternative hypothesis H,. The logic behind the p-value is as
follows. As seen before, since Hj is the status quo of a situation, the benefit of doubt would go
to Hy. Or in other words, unless proven otherwise the verdict would go in favour of the null
hypothesis Hy. (This is exactly analogous to the situation of an accused being considered
to be not guilty in jurisprudence, which is the null hypothesis. Strong evidence must be
provided for rejecting this null hypothesis, and thus accepting the alternative of the accused
being guilty.) Thus we start with assuming the null hypothesis to be true. Then decide what
kind of phenomenon constitutes an evidence against Hy. For the example at hand, a small
value of Y (compared to 2) would constitute such an evidence. Then we see what has the
data at hand said about this phenomenon. For the given example, the observed data yields
an observed value of 1.743 for Y, or Y ppserved = 1.743. Now (by assuming Hj to be true)
we compute what is the probability of observing such a phenomenon as the observed data
has depicted. For the example, this amounts to calculating P(Y <Y ppservea = 1.743| 11 = 2)
which is same P(Z < Zypservea = —4.063) = 0.00002. This is the p-value of this test. Now
let us try to interpret this p-value. The p-value is saying that if indeed H, were true, i.e. if
indeed the population mean were 2 or more, the chance that we would observe a sample mean
of 1.743 or less is about 2 in a lakh. This is a very small chance of occurrence. But however
such a phenomenon has happened in terms of the observed data. So what is going wrong?
In the calculation of the probability the assumption that Hj is true. Thus the p-value gives a
very compelling evidence against Hy, which should lead to its rejection. Note that since the

10



p-value = P(Z < Zpservea) and previously we were rejecting Hy if Zppserved < Za, these two
methods are identical with the rejection rule: Reject Hj if p-value< a. Though these two
approaches are thus equivalent, it is always better to provide the p-value or the “observed
significance level” (instead just accepting/rejecting H, for a given fixed value of « or the
so-called fixed significance level testing), because in a way p-value provides the amount of
evidence the observed data is carrying against Hy in 0-1 scale, with the credibility of Hj
being proportional to the numerical value of the p-value.

The above example illustrates the way we test the hypotheses Ho: p2 pio for a Nor-

Ha oo < g

mal mean with a given known variance o2 for a given hypothesized value g of ;2. The mechan-
ics of the test may be stated as follows. Either, fix a significance level or maximum value of
probability of committing a Type-I error o, and then reject Hy if Zypserpea = }/"’“;4;“\/{“—0 < Zg-
Or, better provide the p-value=P(Z < Zgpserved), Where Zopserpeq i as defined in the previous
sentence, to the user who can then compare it with his/her personal « to arrive at a decision.

There are two other common types of alternative hypotheses which are also tested for
Normal mean (with a given known variance 0?). These hypotheses and the mechanics of
testing them are presented in the following table:

‘ Hypotheses ‘ Fixed Significance Level Testing ‘ p-value ‘
Hy: < : . % _
HZZ : Z > z 3 Reject Hy if Zopserved = 7}/""357% £ > 21 a P(Z > Zgpserved)
Hy: = . . Y _
st . //j ?é IZE Re.]eCt Hy if |Zobse'rved| = Yobs;;q\;/_ez_uo > Z1-a/2 2P(Z > ‘Zobse'rvedD

While the logic of testing for H,, is exactly analogous to that of H,;, just note that in
this case one should reject Hy if Y jpserveq is large compared to pg, and how large is large is
determined by a. Thus for a fixed « in this case Y is such that P(Y > Y |u = p) = a.
Transforming this to Z-computation yields Y. = uy + (0/4/n)21_o and the above rejection
rule. For H,3 the test is called a two-tailed test. In this case Hy should be rejected if Z pserved
is far away from 0 in either direction. Since the distribution of Z is symmetric about 0 this
leads to a symmetric rejection region. That is in this case Z, is such that P(|Z| > Z.) = «.
Now using the symmetry of the standard Normal distribution about 0, it may be seen that
Z. = z1_q/2, Which yields the given rejection rule as listed in the above table for H,s.
Hypothesis testing about the Normal population variance o2 like wise is carried out using
the sample variance s2_,. The logic is exactly same as before i.e. for some given o7, we reject
H, for small s2_, value compared to o while testing for H,; : 02 < o2; we reject Hy for large
s2_, value compared to o3 while testing for Hyy : 02 > 032; and we reject Hy for either small
or large s2 ; value compared to of while testing for H,3 : 02 # 02. The “large” or “small”
values are determined by a pre-fixed value of a and sampling distribution of (n —1)s2 , /o2,
which has a x2_, distribution under Hy. The rejection rules and the corresponding p-value
expressions for testing for Normal variance is summarized in the following table:
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‘ Hypotheses ‘ Fixed Significance Level Testing ‘ p-value ‘

Hy: o?>0? ] ] 2 =

Hy: ot <op | Relect Hoif (0 - 175 <Xl P (X < (n-1%)

H : 0-2 < 02 : . 52 52

Hy: o?=of | pooct Hy (0= 1)722" < Xn-ta/2 9 of Hy ifs2 | < o2

H,: o%+# o} or (n — 1)57;—;1 > 2, | o2 2pof Hyp ifs? | > o3
0 )

Unknown Population Variance:

Now let us turn our attention to the case of testing hypothesis about a Normal population
mean 4 when the the population variance o2 is unknown. In this case the logic remains
the same, with only difference lying in the use of sampling distribution of Y. Though the
sampling distribution of Y is still N(u,0?/n), it can no longer be directly used because o? is
unknown. A natural solution to this problem would be to replace o2 by its unbiased estimate
s2_,. However this changes the resulting distribution to a so-called ¢-distribution.

Definition: If Z ~ N(0,1) and X ~ x2 and Z and X are independent, then the variable
T = —Z— is said to have a t distribution with v degrees of freedom (d.f.) and is written as

- \/ X/v

T~ t,.

The t-distribution in a way can be thought as a generalization of the standard Normal
distribution, except with fatter tails. As a matter of fact a ¢ distribution with oo degrees of
freedom is same as the standard Normal distribution. P.d.f.’s of different ¢ distributions are
plotted in the following figure:

Different t Distributions

Based on the ¢ distribution the testing for Normal mean in case of unknown population
variance can be summarized as follows:

12



‘ Hypotheses ‘ Fixed Significance Level Testing ‘ p-value

H, : > . . % _

H:l . //j 2 52 Re.]eCt HO if Lobserved = Yo;ﬂ%/eil/ﬁm] < tn—l,a P(tn—l < tobser’ued)

HO : M S NO 1 3 0o0serve

Ha2 D u > Lo Re.]eCt HO if tobserved = Y;nli/:l/ﬁuo > tn 1L,1-«a P(tn—l > tobserved)

Hy - =

H:3 : Z# ZE ReJeCt HO if |t0b567‘11€d‘ %W > tn—l,l—a/? 2P(tn—1 > |t0bserved‘)
To see why - N— has a t-distribution with n — 1 d.f., observe that Y ~ N(u,0?/n)

2
and (n — 1)7 x2_, (and they can be shown to be independent). Thus sni/\/ﬁ =

(—u)/(o/yn) = 4 which by definition has a t distribution with n — 1 d.f.

Vin—Ds2_ /% /(1) /3 /(1)

Example 1 (Revisited): If we did not have any information about population variance o

we would have done a t-test in this case. Here Y gpserves = 1.743 and s,_; = 0.2245. This

yields a topserved = 0;21453/} —3.62. Since here it is a left-tailed test of H,;, comparing

the observed t-value of -3.62 with tg’().()l = —2821, t9,0.05 = —1.833 and tg,()_l = —1.383 we
can again safely reject Hy. More precisely the p-value P(ty < —3.62) is given by 0.0028,
indicating that if indeed the null hypothesis were true there is only a chance of 28 in 10,000
of observing a data set as the one we have got, leading to a possible rejection of Hy.

3.3 Inference for Two Normal Populations

Now suppose we have two variables Y; and Y5 both of which are Normally distributed with
Y] ~ N(ui,o0?) and Yy ~ N(uo,03). Also suppose we have two samples of sizes n; and
ny respectively from these two population of values of Y} and Y; with Yiq, Yio, ..., Yy, and
Yo1, Yo, ..., Yo, as the respective samples. The main problem of interest is to compare
the two population means p; and py in terms of their difference p; — po, with a passing
interest on the comparison of the two population variances o? and o3 in terms of their
ratlo 01 2/02. Let Y, = n% >3, Yy and Y, = n—12 2725 Yy denote the two sample means and

1 = n1—1 Ej:1(Y1j - Y1)2 and 5% =
respectively.

The methods of inference for p; — ps now depend on the kind of assumptions we are
willing to make about the population variances o? and ¢2. This is because the sampling
distribution of Y is N(u;, 07 /n;) for i = 1,2 and thus the sampling distribution of Y; — Y,
the point estimate of the parameter of interest u; — o, is N (1 — po, 0?2 /0y + 02 /na), which
critically depends on the two population variances o7 and o2. This leads to considerations
of various cases which are as follows.

g e (Yo — Y,)? denote the two sample variances

Case I: Known o? and o2

Here for drawing inference on p; — po we look at the quantity (?1772){(“1{“2) which has a
14%
ny ' ng

standard Normal N(0,1) distribution. This is utilized for both testing of hypothesis and
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interval estimation 3 of the parameter p; — po. The test procedure for the three different
scenarios of alternative hypotheses are summarized in the following table:

‘ Hypotheses ‘ Fixed Significance Level Testing ‘ p-value ‘

Ho: p1r—p2 > po : ; (V1-Ya)-
R t Hy if 7., = Y1—t2)-Ho - P(Z < Z
Ho:t pn—pp<po | 00 0N S T LT g S R ( )
ny  m9
: — 2 < YY)~
HO H1 H2 = Mo Reject HO if Zobs — Y1-Ys)—po > Z1_a P(Z > Zobs)

Hao o 1 — g > po ,/ﬁ+ﬁ

Hy:  pn— po = po Reject Hy if Zy, = |2 22l po| > G2 | 2P(Z > Zops)

H,s: — /o3 75
a3 M1 — P2 F Mo 122

In most practical applications the ug value we are typically interested in 0. A 100(1 — a)%
confidence interval for p; — ps is given by (Y1 —Y2) £ 214 /2,/% + Z_g

Case II: 02 and 07 Unknown but Large Samples, ni,ny > 30

In this case the test procedure and the confidence interval formula are exactly as that of
Case I, except here o7 and o2 are replaced by their unbiased sample estimates s? and s2

respectively.

Case III: 07 and o2 Unknown but Equal, ¢? = 52

To begin with, a few remarks are in order about this assumption of equality of population
variances. First, the technical term for this assumption is called homoscedasticity. Second,
while comparing the means of two Normal Populations, this is the most interesting or in-
terpretable case. To see why, refer back to the figure in page 4. There suppose one of the
populations is the standard Normal (solid line), and for the second population consider two
cases - N(—2,1) (dot-dashed line) and N(1,2?) (dashed line). When one compares N (0, 1)
to N(—2,1), the homoscedastic case, there is a clear-cut difference, namely it can be said
that the values coming from the N(0,1) population are in general larger than the values
coming from the N(—2, 1) population. However when one compares N (0,1) to N(1,2?%), the

5We have not talked about interval estimation in the earlier case of a single Normal distribution in

§3.2. There, for known o2, UY/?/’% has a standard Normal distribution. Thus for a desired confidence level

of 1 — a, one could write that P(z,/2 < 07/;\/’% < Z1_q/2) = 1 — a, and then after rearranging the terms

and exploiting the fact that z,,, = —z;_4/2 one could rewrite the above probability statement as P(Y —
zl,a/Q% <p<Y+ zl,a/zﬁ) =1 — «a. This gives a 100(1 — a)% confidence interval for u. However
caution is required for interpreting the above probability statement or confidence intervals in general. In
the above probability statement, what is random is Y and not . Thus the probability statement says that

if one keeps on using the random interval Y =+ z;_, /2\/LH repeatedly for all possible samples of size n that

can be drawn from the population of Y values, then 100(1 — @)% of the time this random interval will
successfully be able to capture the unknown value of u. Similarly a 100(1 — @)% confidence interval for o2

_1)s2 1142 N
may be obtained as (Z DLFES R G LA (n—1)s;_4

, by utilizing the sampling distribution of ~x2_,. For

) 2 2
n—l,1-a/2 Xn—1l,a/2 4
unknown o2, % ~ tp_1. Thus a 100(1 — @)% confidence interval for p in this case may be obtained as
Yt 1,102 S:L/_ﬁl .
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heteroscedastic case, there is no clear way of saying population of which values are in general
larger or smaller than the other. Thus for the ease of interpretation, whenever possible, we
prefer to compare two population means under the umbrella of homoscedasticity.

This leads to the responsibility of first checking this assumption of homoscedasticity.
That is before applying the methods applicable for this case, we must first ensure that
indeed the two population variances o7 and o2 are equal. But note that this brings us to the
problem of comparing two population variances. For this comparison the natural statistic to
look at is the ratio of the two sample variances s?/s3. If this ratio is “close” to 1 then we may
safely assume homoscedasticity, otherwise we will be forced to reject the (null) hypothesis of
equality of two population variances. That immediately raises the question of how “close”
is “close” and for the answer we already know what to do. We need to figure out the kind
of behavior one may expect the ratio of sample variances to exhibit under the assumption of
homoscedasticity, or in other words we need to know the sampling distribution of s?/s2. This
now leads to the final sampling distribution that we need to study for the Normal models,
called the F' distribution defined below.

Definition: If U ~ XEI and V ~ Xﬁz and U and V are independent, then the variable X =

‘IZZ; is said to have an F' distribution with numerator degrees of freedom v; and denominator

degrees of freedom vy and is written as X ~ F),

1,V2°

The p.d.f’s of some typical F' distributions are plotted in the following figure:

Different F Distributions

As the N(0,1) or ¢ distributions are studied with symmetry around 0 in mind, the F’
distribution is studied around 1. Here also there is a symmetry around 1, but it is in a
reciprocal scale. A few other properties of the F' distribution would be illuminating in its
application.

2
Note that by definition, for the numerator degrees of freedom equal to 1, F7 , = (ﬁ) =

t2. Or in other words an F' distribution with 1 numerator degrees of freedom is same as the
square of a t distribution with its d.f. same as the denominator d.f. of the F'. Next note

that 1/F,, ,, is same as F,, ,,. Also note that F), ., is same as x2/v and thus F,,, is same
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as the reciprocal of x2/v. Finally note that Fi, » is a degenerate variable concentrating all
its probability mass at 1.
Now coming back to the problem of comparing two population variances, note that

— 52 mno— 52 . . .
% ~ x5,_1 and (ma=ls; X4,_1 and they are independent by sampling design. Thus

2 2
Z—%j—é has an F,, 1,1 distribution. Utilizing this, the test of hypotheses comparing two
population variances are summarized in the following table:

2

| Hypotheses | Fixed Significance Level Testing | p-value |
2
Hy: o >3 . 82 52
%~ . | Reject Hy if 23 < Foy_1np-1a P (Fuicina1 < 52h)
Hy: % <o? i 353
2
2
Hy: % <o . 52 52
Hy, - U_% S O-g Reject H, if o33 > Fnl—l,nQ—l,l—a P (Fnl—l,nZ—l > m)
02 i
Hy: % =o? if 3L, < F, 2p of Hy if 3 < o?
0- a§ 0 Reject H U§s§ ni1—1,n2—1,a/2 p al sé 0
0 .
Hag B Z—é 75 O'g or U;}L% > Fn1,17n2,1,1,a/2 2p of Hag if z—% > O’g

For testing for homoscedasticity we shall test Hy against the alternative H,3 with 02 = 1. A
100(1—a)% confidence interval for 07 /g, is given [(s%/s%)Fnrl,m,l,a/Q, (53/83) Fry—1m1-1,1-a/2| -
Note that for any vy and vy Fy, yy 0 = 1/F, 1y 1-a-

If Hy cannot be rejected against H,3 with 03 =1, then we know that we are in Case III.
In this situation the next thing one does is estimate this common variance 0% = o7 = 3.

A Uniformly Minimum Variance Unbiased Estimate (called UMVUE ©) for this common
2 (n1-1)si+(n2—1)s3 2

ni+nz—2 ’ SP

variance o“ is given by sf, = indicates a pooled-estimate. It can be

2 J— J—
shown that (n; + ng — 2)2—’; ~ Xiﬁmﬁ and is independent of Y; and Y,. Thus if we

replace 07 and o3 by their common estimate s7 in the Z-formula of Case I, we get ¢t =

(s _?2)1_(’“1_“2) ~ tn,1n,—2- These t-tests (called pooled t-tests) for the hypotheses involving
o/ ny tag

i1 — po are summarized in the following table:

‘ Hypotheses ‘ Fixed Significance Level Testing ‘ p-value
Ho: p1—p2 > po : . _ (V1Y)
Hal [ — o < Lo Re.]eCt HO if tobs — m < tn1+n2*2,a P(tn1+n272 < tobs)
HO : Ha 2 S Ho RejeCt HO if tobs = (Yli?z)iuo > tn1+n2—2 11—« P(tn1+n2—2 > tobs)
Hyo:oopn — po > o N ’
Hy:  py — po = po . : _ | (Y1-Y2)po
Ha3 Dl — o 7& Lo Re.]eCt HO if tobs - m > tn1+n2—2,1—a/2 2P(tn1+n2—2 > tobS)

A 100(1— )% confidence interval for 11 — s is given by (Y1—=Y2)£tn,4n,-2,1-a/25p/ n1_1 + n1—2

6 All the estimates we have considered so far, like Y for y and s2_, for o2 in a single Normal population
are UMVUE, which is an estimate with minimum variance among the class of all unbiased estimates. For
any population parameter, a UMVUE is the most desirable estimate one can think of.
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Case IV: 07 and 02 Unknown and Unequal, 0? # o2

If Hy : 02 = 02 is rejected against the alternative H, : 02 # o2 then we cannot use the

pooled t-test as discussed above. In this case the resulting ¢-test is called Welch’s ¢-test.

The formula of the t-statistic in this case is identical to Z-statistic that was used in Case

II, namely ¢t = % (which was the Z-statistic of Case II). But here the sampling
L

distribution of this s‘lcatiétic is approrimated by a t distribution with v degrees of freedom,

where a conservative value of v is given by Minimum{n; — 1,ns — 1} while a more accurate

2 522
_+_
ni n2

1

sf : 1 53 2.
Example 2: Here in an experimént (v%)w;ﬁ%_ﬁfgﬁl)festigate whether the lower column revo-
lution stiffness (say rs) has any effect on the response load on column joint of steering (say
Is). For any statistical analysis one must first visually try to assess what is going on before
launching any formal analysis. Towards this end we first make some plots:

value of ¥ may be computed as

Boxplot of Load for Two Levels of rs

Ioad
!

levels of rs

By looking at this plot it appears that as such rs may not have any effect on load or the
distribution of load for the two levels are not very different. This intuitive feeling will be
formally tested next. But for this we must test for the assumption of Normality first using
NPP. These plots are provided in the next page. From these NPP the load do not look very
Normal. So the best possible power transformation was tried, but even that failed to provide
a decent NPP. Thus for the sake of illustration we proceed with the formal analysis by first
testing for homoscedasticity and then the pooled t-test.
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NP P of load for rs=0O NP P of load for rs=—1
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> var.test(load"rs)
F test to compare two variances

data: 1load by rs
F =1.0974, num df = 134, denom df = 134, p-value = 0.5914
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.7810349 1.5418990
sample estimates:
ratio of variances
1.097395

> t.test(load"rs,var.equal=T)
Two Sample t-test

data: 1load by rs
t = -0.0609, df = 268, p-value = 0.9515
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.1185705 0.1114594
sample estimates:
mean in group -1 mean in group O
28.86496 28.86852

> t.test(load"rs)
Welch Two Sample t-test
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data: 1load by rs
t = -0.0609, df = 267.423, p-value = 0.9515
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.1185716 0.1114605
sample estimates:
mean in group -1 mean in group O
28.86496 28.86852

Thus we may conclude that as such indeed lower column revolution stiffness does not
affect on the response load on column joint of steering.
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