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1 Introduction

Phenomena involving uncertainties are typically studied using probability models. In all
such phenomena usually there are certain observables, called random variables and under-
standing of such phenomena are considered to be complete when one knows about the kind
of distributions (also called “law”) these random variables follow. The important problem
of interest involving discovering relationship between different random variables are also ex-
pressed in uncertain terms through these probability distributions. (This is because, that is
the best we can do when faced with uncertainties.)

The problem of statistical inference involves gathering information or evidence about these
typically unknown probability distributions (conceptualized as the “true” behavior of the
variables under consideration in a real or hypothetical population) based on a finite number
of observations from them, called a sample. To put it in mathematical terms, let Y denote
an observable random variable with cumulative distribution function or c.d.f.! F(y). As
data one has a random sample Y7,Y5,..., Y, on Y drawn from its (population) distribution
F(y) - typically expressed as Y1,Y5,...,Y, i.i.d. (standing for independent and identically
distributed) F'(y). The problem of statistical inference usually consists of the following:

1. Estimate F(y) or any of its functional like mean p = [*_ y dF(y), variance o? =
[ (y — n)? dF(y) or median &5, which is a solution of the equation F(y) = 0.5.

2. Test hypotheses about F(y) or its functionals; like F'(y) = ® (%) for some p and o,
where ®(-) is the standard Normal c.d.f.; or p > 5. OR
3. Predict the behavior of a future observation like Y,
based on the random sample Y7, Y,,..., Y, on Y.

Solution of above problems in general is sometimes fairly hard if one allows the c.d.f. F(-)
to be completely arbitrary. Methods applicable in situations involving arbitrary F(-)’s are
called non-parametric or distribution-free methods. While such methods have the appeal of
assuming very little about the unknown F'(-), the price one typically pays comes in terms
of larger sample size and in general increased complexity of analysis. In any case before
attacking a problem in its most complex form, it is always instructive to analyze the prob-
lem in simpler terms if not for anything else, but at least for getting acquainted with the
methodological issues and probably gaining some extra in sight on the way.

One such simplification is attained by assuming the distribution of Y i.e. F(y) belongs to
some given parametric family of distributions like Binomial, Poisson, Normal, Exponential

1C.d.f. of a random variable Y is defined as F(y) = P(Y < y). There are several ways of characterizing
the distribution of a random variable, but mathematically c.d.f. is the most attractive choice because of its
existence for all types of random variables and thus its utility as a unifying concept.



etc. as opposed to coming from an arbitrary non-parametric? family. In this parametric set-
up the form of F(-) is essentially assumed to be known barring a few unknown parameters
denoted by 6°, and is thus written as F(y|@). This considerably simplifies the problems of
statistical inference. Because now all the quantities of interest (in the population), such as
the ones mentioned in 1, 2 and 3 above, can be expressed in terms of the p 0;’s, 7 = 1,2,...,p,
and the problem of inference reduces to drawing inference about only these p unknown 6;’s
for j =1,2,...,p based on n i.i.d. observations on Y ~ F(y|@)*.

Of course one can theoretically, and in many important practical applications (such as Time
Series Analysis), has observations which are not i.i.d.. Bayesian analysis of such data is going
to be exactly same as the methods that are developed in these notes. The only difference in
the non-i.i.d. case would be in the form of the likelihood function. This point will again be
mentioned elsewhere in appropriate places in these notes. Thus though we shall begin our
discussion with the i.i.d. case, these notes are not going to be restricted to this i.i.d. case
alone. However we shall confine ourselves only to the case of parametric Bayesian Inference
in these notes leaving extremely theoretically intensive Bayesian non-parametrics out from
the realm of our discussion. We begin our discussion with some simple review examples of
the nature of problems addressed in statistical inference.

Example 1: Suppose we are interested in 7, the probability of a consumer choosing brand
X of toothpaste. For this problem the underlying probability model is a simple one. Let the
random variable Y denote 1 if a consumer chooses brand X of toothpaste and 0 otherwise.
1 with probability 7
Then ¥ = { 0 with probability 1 — 7
p(y|lr) = 7¥(1 — m)'¥ for y = 0,1. Now let us observe the choice of toothpaste brand
for n consumers denoted by Y7, Y5, ...,Y,. Note that for i = 1,2,...,n each of the Y;’s
is 0-1 valued having the same p.m.f. p(y|r) as above. Now one simple problem could be
obtaining a single valued point estimate of m based on the data Y1,Y5,...,Y,. But due
to uncertainty in this point estimate we might next look for an interval of values called an

which has the probability mass function or p.m.f.?

2 Actually the term “non-parametric” is somewhat of a misnomer. It is used in the sense of something
which is not parametric. But mathematically in the so-called non-parametric situation the number of pa-
rameters is infinite in contrast to the parametric case, where one has to deal with possibly a few but in
any case only finitely many parameters, like the probability of success of Binomial, or mean and variance of
Normal, or the mean of Poisson, or the failure-rate of Exponential, distributions. Thus many statisticians
prefer to refer the methods associated with an arbitrary F(-) not assumed to belong to any particular family
of probability models as distribution-free methods instead of non-parametric methods.

3In general we shall deal with more than one (but finitely many, say p) unknown parameters 6,6, . .., 0,.
All these unknowns are collectively denoted by the vector @ = (61,6>,...,60,)". The matrix transposition
operator / is used to adhere to the convention, that by default all vectors are column vectors. Thus @ is a
p x 1 vector (matrix) of p unknown 6;’s for j = 1,2,...,p.

4The symbol ~ is read as “as distributed as”.

SFor a discrete random variable Y, such as the one in this example, its p.m.f. is defined as p(y) = P(Y =
y). P.m.f.’s are a convenient way of characterizing the distributions of discrete random variables. Note that
given a p.m.f. p(y) one can construct its c.d.f. F(y) as F(y) = >_,., <, p(z), and given a c.d.f. F(y) its p.m.f.
is given by p(y) = F(y) —lim,_,,— F(z). Thus there is a one-to-one correspondence between the p.m.f. and
c.d.f. of a discrete random variable, and one can use either one to characterize a discrete distribution. It
is always more convenient to deal with the p.m.f. in the discrete case, for the statistical inference purpose.
C.df. is typically used while discussing in general terms.



interval estimate which we hope will contain or feel confident about containing the true
unknown value of 7. The marketing team might claim that more than 10% of the consumers
are choosing brand X. Then we have this task of justifying the validity of such a claim or test
the hypothesis that 7 > 0.10. All these things we have to do based on our observations
Y1,Ys, ..., Y, which are i.i.d. p(y|m). These are some examples of typical problems that one
hopes to tackle in statistical inference. \V4

Example 2: Let X denote the monthly advertising expenses, in lakhs of Rs., and Y denote
the monthly sales, in crores of Rs., of a company. As a first step in modeling a relationship
between X and Y it is postulated that if at all X has any effect on Y it is going to be
linear in nature, and further the conditional variance of monthly sales given any fixed level
of monthly advertising expenses is a constant i.e. does not depend on X, and the conditional
distribution of monthly sales is Normal. These postulates in a nut-shell can be expressed
as the probability model Y'|X ~ N(8y + 51X, 0?). In this model 3, represents the expected
increase in monthly sales for every unit increase in monthly advertising expenses. That is for
instance if 8; = 0.02, according to the model, for every lakh of Rs. increase in advertising
expense, one can expect the sales to go up by 0.02 crores or Rs.2 lakhs. Thus a /3; value of less
than 0.01 may not be a very profitable proposition for increasing the advertising expenses.
If it is and on a certain month the company decides to spend Rs.10 lakh on advertising then
we would like to predict either in a point or an interval sense (better yet get the distribution
itself) what the company’s sales is going to be for that month. All these, namely deciding
whether ; > 0.01 or not, and getting the distribution of ¥ when X = 10 (for example) has
to be done based on the past data (X1,Y7), (X2, Y2),..., (Xn, Ys) on n months. (Otherwise
how are you to know the values of the parameters 3y, 8, and 0%?) These are again some
typical problems addressed in statistical inference. v

So how are these typical problems of statistical inference involving point and interval
estimation, hypothesis testing, and the problem of prediction or forecasting han-
dled? For this a quick review of philosophy of the methods within the standard classical or
frequentist paradigm may not be very inappropriate.

2 Frequentist Inference

In the frequentist setting, merit of any method is always judged in terms of the method’s
behavior over repeated sampling. This is done by considering what is called the sampling
distribution of a statistic. A statistic is nothing but whatever is computed using the data
Y1,Ys, ..., Y, at hand. If T'(Y},Ys,...,Y,) is a statistic, then since it is a function of the
random variables Y7, Ys, ... Y, it itself is a random variable. Of course for a given set of
data at hand like Y7 = y1, Yo = 9o, ..., Y, = y,, the statistic T will have an observed value of
T = t, but conceptually T being a function of random observations (albeit following the law
F(y|0)) is itself a random variable and thus one can talk about its distribution which can
be derived from the parent distribution F'(y|@). This distribution of a statistic T is called
its sampling distributions.



This distribution is called the sampling distribution because of the following interpretation.
For a given sample one gets an observed value of 7. Now think about obtaining another
sample of size n and then computing the value of 7. You will most probably get a different
value from the one you have obtained earlier. Now imagine repeating this process till all
possible samples of size n have been drawn. For each of this sample compute the value of
T and then study the distribution of these values of 1" over all possible samples of size n
from F(y|@). This is same as the (possibly theoretically derived) distribution of the function
T(Y1,Ys,...,Y,) where Y1,Y;, ..., Y, are i.i.d. F(y|@). Thus this distribution of 7" tells us
how the values of 7" would behave over repeated sampling from the same population and is
thus called the sampling distribution of the statistic 7.

For example as in Example 1, if Y;,Y5,...,Y, are ii.d. Bernoulli(r) then the sampling
distribution of the statistic of interest Y I ; Y; is Binomial(n,n). If Y1, Y5, ..., Y, are ii.d.
N (p,0%), the statistics (sample mean, sample variance) denoted by (Y = =37, V;,s2 | =

L2 (Vi — Y)?) are independent with Y ~ N(u,0?/n) and s2 | ~ n”—fle%l.

n—1 &i=1

In the rest of this section, where we very briefly take upon the frequentist approach towards
addressing the different inference problems, to keep matters simple, we shall only discuss the
case of a single parameter # instead of the vector-valued multi-parameter case of 8. In any
case discussions in the following subsections do not get into any in-depth methodological
development issues. They are just meant to provide only very brief logical reasonings behind
the frequentist approach to statistical inference, and thus nothing is essentially lost if we
only consider the case of a scalar 6.

2.1 Point Estimation

Point estimation is concerned with providing a single valued estimate for an unknown pop-
ulation parameter f. The optimality of such a point estimator of # is judged by its behavior
over repeated sampling or in terms of the properties of its sampling distribution. For instance
in Example 1, 7 = % » 1Y, the proportion of consumers choosing brand X toothbrush in
the sample, is the “best” point estimator of 7 in the sense that it is the Uniformly Min-
imum Variance Unbiased Estimator (UMVUE) of 7. First of all 7 as defined above is
Unbiased® because E,[#] = m V0 < 7 < 1 (easy to show) and then it can be shown (a tricky
task) that among all possible unbiased estimators 7" of 7, 7 is the one which possesses the
property that V;[7] < V;[T] Y0 < m < 1, where the variances V[-] are computed based on
the sampling distributions of the respective statistics, establishing that # is the UMVUE? of
.

6 A statistic T is said to be an unbiased estimator of a parameter 6 if Ey4[T] = 6 V8 € ©, where O, called
the parameter space, is the set of possible values the parameter 6 can take, and the expectation Ey[T] is
taken over the sampling distribution of 7'. Thus it means that if an estimator is unbiased, on an average it
hits the target right, in the sense of repeated sampling.

"In general an estimator 6 of 9 is called the UMVUE of a parameter @, if it is unbiased for 6 and has
the minimum variance (computed w.r.t. their respective sampling distributions) among all other unbiased
estimators of 8 V0 € © i.e. Eg[f] = 0 V0 € © and Vy[f] < V[f'] V6 € © V8' 5 Ey[f'] = 0 V6 € ©. The
Ey[-]’s and Vp[-]’s are subscripted with a 6 to emphasize and indicate the fact that, in general the sampling
distributions and thus the first and second moments of a statistic depend on the unknown parameter 6.

4



For the problem of point estimation, in the frequentist paradigm, one usually first strives
to obtain an UMVUE. If the UMVUE exists for a problem, the problem of point estimation
is considered to be solved. However there is no direct straight-forward algorithmic way
of obtaining a UMVUE. That is given a F(y|f) and Y3,Y5,...,Y, iid. F(y|f) there is
no immediate formula or numerical method of obtaining a UMVUE of 6 or some function
¢(0) that might be of interest. In fact UMVUE may not even exist in some cases. In
such situations one usually employs methods of Maximum Likelihood or Moments or Least
Squares or Minimum x? to arrive at an estimate. In any case the optimality of any such
resulting estimator is judged in terms of its behavior over repeated sampling or in terms of
the properties of its sampling distribution. In most of the cases the derivation of the exact
sampling distribution of such estimators become tedious or impossible. In such situations,
which are practically the norm rather than being exceptions, one tries to obtain at least
a large sample approximation (as the sample size n — o) of the sampling distribution of
the estimators and then judges or compares its behavior with other competing estimators in
terms of these approximated sampling distributions. Simulating the sampling distribution
using a technique called bootstrap (instead of an analytical large sample approximation)
is also widely used. Whatever technique one might use, the bottom line is that, in the
frequentist paradigm optimality or desirability of a point estimator is judged in terms of its
sampling distribution, which is nothing but the distribution of the estimator over repeated
sampling from the same population.

As mentioned above, a point estimator of a parameter yields a single estimated value of
the parameter. Now since this value depends on the sample, which is subject to sampling
fluctuation and thus uncertain, it is customary to report the amount of error that is inherent
in the value obtained by using an estimator f. This error is called the Standard Error of 6

denoted by SEjy(0), which is defined as 1/Vj[f], which is nothing but the standard deviation

of the estimator § calculated according to its sampling distribution. But SEy(f) needs to
be interpreted with some caution. It does not mean that the true value of the unknown
parameter @ lies somewhere within 6 + SEg(é). In order to obtain such interval estimators
one has to go a step further and introduce the notion of confidence interval in the frequentist
set-up.

2.2 Interval Estimation

We begin our discussion of interval estimation with an example. Suppose we have a random
sample of size n from a Normal population with known population variance o2. Or in
other words let Y1,Y5,...,Y, be i.i.d.N(u,o0?) with known o?. Then it can be shown that
=Y = +37 Y is the UMVUE of p with SE, (i) = a/\/_ (SE, (1) is not subscripted
also with 0% because ¢ is not an unknown parameter). But in order to have an interval
estimator of p one has to go beyond simply the mean and variance (standard deviation) of
i1 and study its sampling distribution in totality. As stated earlier it can be shown that
Y ~ N(p,0?/n) and using this result one can then make a probability statement like

<u< Y + Z1-q/2

P<? -2 = Vi<a<l (1)

Vo }>:1_“’



where z, is the a-th quantile of a standard Normal distribution i.e. z, is such that P(N(0,1) <
Z,) = a. Equation (1) now yields a 100(1 — «)% Confidence Interval (CI) of y as the
interval Y = 2z1_4/20/y/n. This CI of y is of the form fi & 21_4/2SE, (7). Thus standard
error of an estimator is best interpreted in terms of an interval estimator of the form: (point
estimate) £+ (a blow-up factor) x (its standard error), where the blow-up factor depends on
the degree of confidence one wants in one’s interval estimator and thus controlling the width
of the interval. As intuition suggests, larger the confidence wider is the interval.

A couple of remarks regarding CI are in order. First of all, all CI’s are not of the form
(point estimate) + (a blow-up factor) x (its standard error) (e.g. CI of ¢ for a random
sample from a N(u,o?) population). Thus the standard error of an estimate is not always
as neatly tied up with its CI as in the above example. However one class of asymptotic CI
(called Wald intervals) of parameters of so-called “regular” models usually have this close
tie with their respective asymptotic standard errors, which is based on the large sample
approximation of the sampling distribution of the corresponding point estimator.

The second remark concerning the interpretation of CI is more important. For instance,
it would be wrong to say that the probability that a 100(1 — «)% CI of 6 contains its
true unknown value is 1 — a.. For getting the correct interpretation let us look back at the
basic probability statement in equation (1) leading to the CI formula for a Normal mean p
(all CI formulae are derived from similar probability statements involving the appropriate
sampling distribution of an estimator). What is random in the Lh.s. of (1) about which
the probability statement is being made? The correct answer is NOT p but Y. That is the
correct interpretation of the probability statement in (1) is that we have a random interval
Y —21_a/20//N, Y + 21_a/20 /+/n] and the probability that this random interval will capture
the true unknown value of i is 1 —«. Given a realized value of this interval based on a sample
at hand, as it is used in applications, the probability that it contains the true unknown value
of p is either 1 or 0 depending on whether p really falls into it or not - it has nothing to do
with the confidence level 100(1 — a))%. However if you use the same formula for the random
interval and apply it over again and again over repeated sampling then the proportion of
time this interval will contain y is going to be 1 — a. Thus the confidence level must be
interpreted as the coverage probability of a CI over repeated sampling.

2.3 Hypothesis Testing

Next let us look at the issue of hypothesis testing in a frequentist context. There are
essentially two schools of thoughts for the method of testing a statistical hypothesis even
within the frequentist paradigm. One is called the fixed significance level testing and the
other is the observed significance level testing or the p-value approach. In either case, the
problem of testing a statistical hypothesis is formulated as a decision problem of deciding
between whether an unknown parameter 6 belongs to ©y or ©,, where Oy and O, are
disjoint subsets of the parameter space © (see footnote 6 in page 4) i.e. Oy C 6,60, C O
and ©y N O, = ¢, the null set. The statement § € O is called the null hypothesis and is
denoted by Hj, whereas the statement § € O, is called the alternative hypothesis and is
denoted by H,. The problem of hypothesis testing is one of deciding between Hy and H,, in
light of the observed data Y3,Ys,...,Y, iid. F(y|f).

6



In neither approach, fixed or observed significance level, the null and the alternative hy-
potheses get a symmetric treatment. In both the approaches the standing is that, the null
hypothesis H; describes what is called the status quo of a situation, while the alternative
hypothesis states a point that we want to prove in light of the data. That is unless proven
otherwise, the decision goes in favor of Hy giving it the benefit of doubt. The data has to
carry enough evidence beyond any reasonable doubt to establish the truth of the alternative
hypothesis H,, which in it contains a point we wish to prove against the current status quo
of a situation. The situation is analogous to that in jurisprudence, where a person is not
convicted unless proven guilty. That is the null hypothesis is, “the accused is not guilty”
and the alternative is its compliment.

In the fixed significance level testing one begins with the consideration of possible conse-
quences of taking a decision in favor or against the null hypothesis Hy, expressed in terms
of do not Reject or Reject Hy respectively, for the two possible true states of nature Hy and
H,, as summarized in Table 1.

Table 1: Consequences of Different Decisions

Decision Taken — . .

The Truth | Reject Hy Do not Reject H
Hy is True Type-I Error V
H, is True Vv Type-II Error

A/ in Table 1, indicates that a correct decision has been taken, while there are two pos-
sibilities of committing mistakes, classified as the two types of errors. As mentioned in the
previous paragraph, since Hj is supposed to get a favorable treatment, Type-I Error is con-
sidered to be more serious than Type-II Error, and hence is the naming classification of the
two errors, despite the fact that in either case one rejects the right hypothesis.

Now based on the data Y7, Y5, ..., Y, i.i.d. F(y|6), one needs to take the decision of whether
to Reject Hy. The kind of data which leads to the decision, Reject Hy, is called a Critical
Region, abbreviated as CR. Formally, CR = {y : If Y = y then Reject Hy}, where Y =
(Y1,Y5,...,Y,) is the n x 1 random vector of observations and y = (y1,¥2,---,Yn)" is its
realized value in a given sample. Thus CR C Y, where ) is the set of all possible values
one can observe as a sample, and is thus called the sample space. The problem of taking an
optimal decision thus reduces to obtaining an optimal CR.

Ideally an optimal CR should be such that one does not commit either type of errors. But
note that even if the CR is completely specified, and one knows the truth about Hy, one
still does not know whether one is committing one type of error or other or not, because
the decision is being taken based on a random vector Y. Thus the best one can do is
try to reduce the probabilities of committing either types of errors. Therefore one next
systematically introduces these error probabilities as follows. For 8 € ©( i.e. when Hj is
true, the probability of Type-I error is given by a(f) = P(Y € CR|f). Note that for a(f) to
qualify as probability of Type-I error its domain must be ©,. Likewise for # € ©, i.e. when
H, is true, the probability of Type-II error is given by 3(0) = 1 — P(Y € CR|#), with the
domain of 3(#) being 6©,. Thus ideally an optimal test should be such that both «(f) and
B(0) are small for § € Oy and 0 € ©, respectively.



But now observe that both a/(#) and §(0) involve P(Y € CR|6) with their signs occurring in
reverse directions. Thus in general reducing one leads to an increase in the other. This prob-
lem is solved by appealing to the original philosophy of inherent bias towards Hy. According
to this reasoning, Type-I error is considered to be more serious than Type-I error. Thus the
problem of deciding on the optimal CR starts with first fixing a small maximal probability of
Type-1 error, say og. Now among all tests or CR’s satisfying supyce, @(f) = g, one chooses
that test or CR which has the uniformly smallest 5() V6 € ©,. Fortunately, such optimal
CR’s exist and may be explicitly obtained for many important practical cases, and the test
thus obtained is called a uniformly most powerful test of size ay.

The definition of the size of a test is the maximal probability of Type-1 error. Power
of a test, or more appropriately the power function of a test is same as the probability
of Rejecting Hy for a given value of #, which is same as P(Y € CR|f) = 1 — (6). Thus
a test having uniformly smaller 5(f) compared to other tests is same as saying that it is
uniformly more powerful than other tests. This explains why such a test as above is called
a uniformly most powerful test of size ag. In many (so-called two-tailed alternative)
situations, a uniformly most powerful test may not exist. Then together with the size
constraint one introduces another requirement called unbiasedness® and attempts to obtain
uniformly most powerful unbiased test of size «.

In the above approach since one fixes the size, also called the level of significance, of a test,
the resulting optimal tests are called fixed significance level tests. However the point that
is to be noted for these fixed significance level tests is that, whether one talks about the
size or power of a test, these probabilities pertain to the observed data Y, and thus a small
size or large power refers to the behavior of the test over repeated sampling from the same
population, as in the earlier cases of point and interval estimation.

The observed significance level or the p-value approach to testing statistical hypothesis,
though frequentist in nature, comes from a different philosophical perspective than that of
the fixed significance level testing, though in practical implementation one might appear
to be a very close cousin of the other. Here one does not view the problem of testing a
statistical hypothesis as a decision taking problem as depicted in Table 1. Rather one tries
to assess the strength of evidence the data is exhibiting for or against the null hypothesis
Hy. In order to do this it first proposes a test-statistic 7(Y") such that larger the value
of T" more is the evidence against Hy, and then it defines the observed significance level or
p-value as P(1T" > Tipeerved|Ho), where Tipcarveq i the observed value of the statistic T

i.e. Topserved = 1'(y)-

The idea behind this definition is that p-value in a nut-shell gives the amount of evidence
the data is carrying against the null hypothesis in a 0-1 scale. Smaller the p-value more
is the evidence against Hy. This is because for computing the p-value one starts with the
assumption that Hj is true. Then under this assumption, one first assesses the kind of
behavior to expect out of the test statistic 7" in terms of its sampling distribution under
Hy. Then one sees how far in the right-tail (this is because larger the value of 7' more is

8 A test is said to be unbiased if its Power>Size. For uniformly most powerful tests, this condition is
automatically satisfied.



the evidence against Hy) of this distribution is the observed value of T yielded by the data
set at hand is sitting. This is quantified in terms of the p-value. Small p-value indicates
that T pgerved 18 sitting way out there in the right-tail, while a large p-value indicates that
Tobserved 18 not large enough to raise suspicion against Hy. If the p-value is small, it means
that according to Hy, it is fairly unlikely to observe a value of T' such as T pcarved (or
more), but since such an instance has happened that means that there is very little evidence
in support of Hy. On the other hand a large p-value indicates that it is not at all unlikely
to observe a value of 1" such as T j}cerveq (0r more) according to Hy, and thus such values
of T are only to be expected under Hy.

Again the point to be noted is that, even if looked from the point of view of strength or
degree of evidence against Hy, p-value after all is a frequentist probability in the sense that
it says, if Hy were true how likely is it for T to exceed its observed value over repeated
sampling.

2.4 Prediction

This is one area where the frequentist inference is at its worst. Some prediction problem
involves estimation of a parametric function. Like for instance, in Example 2 if the company
is interested in estimating its average sales for all those months in which it had spent Rs.10
lakhs on advertising, then according to the model this equals 5y+ 105, which is a parametric
function and the usual UMVU point estimation or CI interval estimation may be carried
out within the frequentist logic as in §2.1 or §2.2. Likewise based on past observations
one can attempt to forecast the mean or variance of a future observation according to some
ARIMA times series model. But when it comes to predict or forecast a random variable itself
frequentist methods lead to incoherency. Like in Example 2 if the company is interested in
predicting or forecasting its sales for a certain month in which it is spending Rs.10 lakhs
on advertising, mathematically we are interested in the random variable Y'|X = 10. The
methods that are provided for handling such situations in the frequentist set-up is at best
ad-hoc and at worst wrong. Thus we shall not even bother to review such methods under
the frequentist paradigm.

3 Why Bayesian?

In the previous section time and again it was emphasized that all the frequentist methods rely
on sampling distribution which involve the behavior of a statistic over repeated sampling.
But if one gives it a moment’s thought it should be clear that it is sort of uncalled for. Given
a set of data at hand we should possibly take all our decisions based on this data set alone,
without bothering about what other data set we could have observed and base our decision
on that. But frequentist inference dictates one to do just that. For example suppose you
have to run some pathological test on a tumor removed from a patient. You can send them
either to Lab-I or Lab-II, both of which are equally competent. Suppose you toss a coin
and send it to Lab-II and get the results back. Common sense dictates that you should



possibly go by the results sent to you by Lab-II. But frequentist inference demands that you
include (hypothetical) test results from Lab-I as well in your analysis! A couple of numerical
examples will hopefully drive the point home.

0 with probability 0.5
0@ +1 with probability 0.5 °
That is the population random variable Y takes two possible values € and 6 + 1 with
equal probability, where 6 is the unknown parameter of interest. Now suppose we have
2 ii.d. observations Y; and Y3 on this Y ~ p(y|f). Consider the interval estimate § =
{ Minimum{Y;, Y} if V] #Y,

Example 3: Consider the following population p.m.f. p(y|6) =

v Y =Y, (Agreed that it is a degenerate interval of the form [f, ],
1 1= 1

but it is still an interval estimate nonetheless.) Now consider the confidence level (coverage
probability) of this interval estimate. It equals, P(f = ) = P(Minimum{Y;, Y} = 0|Y; #
Yo)P(Y: # Ys) + P(Y1 = 0]Y; = Y5)P(Y; = Y3) = 1x0.5 + 0.5%0.5 = 0.75. But what use
does this 75% confidence have? When indeed Y] # Y, we are 100% certain that we have got
the value of § using 0, while we are only 50% certain about 6 when Y; = Ys. It is true that
over repeated use 0 will capture the value of @ 75% of the time, but we exactly know what
our degree of confidence is for a given data set, and that is what what should be reported
(100% or 50%) instead of the repeated measure 75%. \V/

Example 4: Consider the following hypothesis testing problem where the task is to choose
between § = 0 or # = 1 from a © = {0,1}. Suppose the observable Y is discrete taking
values 1, 2 and 3 and its distribution characterized in terms of its p.m.f. p(y|6) depends on
6 as in the following table:

y— 1 2 3
p(y[0) || 0.0050 | 0.0050 | 0.99
p(y|1) || 0.0051 | 0.9849 | 0.01

Now it can be shown that the most powerful test for Hy : # = 0 versus H, : # = 1 based on
sample of size 1 is given by the CR = {1,2} i.e. one Rejects Hy if the observed Y happens
to be a 1 or 2 and does not Reject Hy if the observed Y happens to be a 3. The probability
of Type-I error for this test/decision rule/CR is 0.005+0.005=0.01, and the probability of
Type-1I error is also 0.01. But when the observed Y is 1, then really there is very little
to choose between 6 = 0 or § = 1, while the most powerful test will recommend Rejecting
H, with the false security of probability of committing either type of error of a small 1%
associated with this decision rule. v

Example 1 (Continued): Suppose in a store it is observed that 3 customers chose brand
X of toothbrush while 9 did not. Based one this observation we ant to establish that 7, the
probability that a customer chooses toothbrush of brand X is more than 0.1. Since this is
the point we wish to prove it goes in the alternative and we formulate this hypothesis testing
problem as Hy : m < 0.1 versus H, : 7 > 0.1. Now a unique frequentist solution to this
problem cannot be found unless more is stated about how these observations were obtained.

First consider a sampling scheme, where we observe the choice of toothbrush brand of 12
consumers among whom 3 happened to choose brand X and 9 did not. In this situation
the underlying observable random variable of interest ¥ = Number of consumers choosing
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brand X ~ Binomial(12,7). Obviously larger the value of Y more is the evidence against Hy
and thus under this sampling scheme we shall compute our p-value as P(B(12,0.1) > 3) =
Yt ( 1,3 ) 0.1%0.912% = 0.1109.

Now consider an alternative sampling scheme where we keep on observing the choice of
toothbrush brand of consumers till we find 9 that did not choose brand X. Under this
sampling scheme the same Y as above will now have Negative Binomial distribution with
probability of success 1-m and number of successes one waits for = 9. Here again larger the
value of Y more is the evidence against Hy. But now according to this sampling scheme the
p-value equals P(NB(9,0.9) > 3) = Y324 ( 8 —/: K ) 0.1%0.9° = 0.0896.

If one is working with @ = 0.1 one will take two opposite decisions (saying not enough
evidence for 7 > 0.1 in the former and concluding that 7 > 0.1 in the later) under the two
schemes yielding the same data. \V4

Apart from the obvious draw-backs as pointed out in the above examples there are some
serious philosophical problems with the frequentist reasoning of statistical inference. Even
without getting into these philosophical discussions it would be worthwhile to point out a
few interpretational difficulties with frequentist methods. If you have already faced difficulty
in swallowing the arguments put forth in §2 for selling the methods (but not the logic, which
is rational and clear) then welcome to the Bayesian club!

First let us look at the problem of point estimation. The main point there is we are
uncertain about the value being provided by an estimator. If this uncertainty is summarized
in terms of its sampling distribution, then it does not say anything about the uncertainty we
are suffering with the sample at hand. It goes about addressing the issue in a round-about
fashion about what to expect in repeated sampling in which we possibly hardly have any
interest in. We could not care less about what would have happened in other hypothet-
ical samples, while dealing with current uncertainties regarding the value provided by an
estimator. A more direct approach of dealing with this uncertainty about the value of the
parameter itself would clearly be more than welcome.

The confidence coefficient of a confidence interval is a misleading quantity. When faced
with a statement like 95% confidence interval for p is [2.3,5.1], most users mistakenly tend
to interpret it as, there is a 95% chance that the true unknown value of y will lie between
2.3 and 5.1. One can hardly blame an user for doing this. It is not as much a fault of the
user as it is with the circuitous arguments that lead one to a confidence interval. Here again
the definition is silent about the numerical interval we have at our hand regarding its degree
of credibility in containing the value of the unknown parameter. But it gives an elusive
probability like number which has nothing to do with the sample we have at hand, but as
usual with what would have happened in other phantom samples. A method which allows
the user an interpretation s/he intuitively understands (like the chance of the unknown p
lying between 2.3 and 5.1 is 0.95) is clearly far more desirable.

The logic of the topic which beginners in statistics possibly find most difficult to understand
is hypothesis testing. Be its lopsided treatment of the null hypothesis, or the kind of
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situation one exactly is in after taking a decision looking at the two error probabilities, or
by looking at the p-value and subliminally attempting to interpret it as the chance of Hj
being true. The whole thing is basically a mess with counter-examples galore showing its
pit-falls in its every nook and corner. What one really wants is a direct approach. Instead
of a round-about p-value the user actually wants a direct probability of a hypothesis being
true without any partial treatment meted out to one hypothesis or other. Moreover, in the
same vein, many a times we are faced with not one (only the null), not two (a null and
an alternative) but multiple hypotheses simultaneously for one to choose from. This is one
major triumph of Bayesian statistics over the frequentist paradigm apart from its coherent
and logical treatment of the prediction problem mentioned in §2.4.

4 The Posterior Distribution

The turning point of Bayesian statistics is the way in which it handles uncertainty. In the
Bayesian paradigm, for drawing inference about an unknown population parameter @ with
the data Y7, Y5, ...,Y, iid. F(y|@), one starts with a prior distribution 7(0) on 6, which
is a probability distribution defined on the parameter space ®. The idea behind the prior
distribution is as follows. An experimenter collects data to gather information about the
parameter @ because s/he is uncertain about its value, otherwise there would have been
no reason to collect any observation. However even before s/he starts collecting data, the
experimenter though uncertain about the exact value of 8, might have some approximate
idea about the kind of values 0 is expected to take. This approximate idea about the value
of @ and more importantly the uncertainty around it, before collecting data or conducting
an experiment, is expressed in the prior distribution of 8. This is because the mathematical
language of uncertainty is probability and thus there is no better way than expressing ones
uncertainty about the value of an unknown parameter @ in terms of a probability distribution
on it, with its support spread over the parameter space ©.

Once one agrees with the viewpoint expressed in the last sentence of the above paragraph
regarding handling uncertainties, things become very smooth sailing. Of course, there is the
initial hiccup of specifying the prior distribution and we shall delve into the issue further
later in these notes. But once we can somehow express our initial uncertainty about 6 in
terms of its prior distribution (@) before looking at the data, the way to update it, in
light of the collected observations, has been explored at enormous depth and length in the
literature. Starting from intuitive arguments to deep axiomatic developments, the answer
to how to upgrade one’s uncertainty about 8 expressed in terms of the prior 7(0), before
collecting the data, to post data situation, is summarized in close to two and half century
old Bayes’ theorem. Thus we start our discussion with a quick review of Bayes’ theorem in
its elementary form.

Bayes’ Theorem: Let ©1,0,,...,0 be k mutually exclusive i.e. ©, NO; = ¢ Vi # j, and
exhaustive i.e. Ule ©; = O, the entire parameter space; states of nature, for which one has
a prior distribution (P(0;), P(0,),..., P(0)) such that Vi =1,2,...k, 0 < P(0;) <1 and
>¥  P(©;) = 1. Then in light of the observed data Y the posterior probability of ©; is
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given by:

__ PY[6:)P(6;)
=1 P(Y]6;)P(6;)

where the likelihood or “model” probabilities P(Y'|0;) for ¢ = 1,2,...k representing the

probabilities of observing the data Y under each of the k possible states of nature, are
assumed to be known.

P(e;Y) Vi=1,2,...k 2)

Proof:

P(6;]Y)
= PlO.NY) because P(A|B) = P(AN B)/P(B)

P(Y)
= P(Y[0:)P(6:) because P(AN B) = P(B|A)P(A) and ©,’s are exhaustive
P(n{uio})

P(Y|0;)P(0;)

P(Ule{ymej}
P(Y]0;)P(©;)
>, P(YNe;)

P(Y]6;)P(6;)
>, P(Y]©;)P(8;)

because ©;’s are mutually exclusive

because P(A|B) = P(AN B)/P(B) \V/

Thus according to Bayes’ theorem one should upgrade one’s uncertainty about 6, expressed
in terms of the prior 7(8) before looking at the data, after observing the data Y = y through
the posterior distribution of 8 denoted by 7(8|y). Now the exact form of the posterior distri-
bution 7(8|y), though is essentially derived using the Bayes’ theorem, depends on whether
the parameter @ and the observable random variable Y are discrete or continuous. For the
time being, we shall also assume that given 8 we have n i.i.d. observations Yi,Y,,... Y, on
the population random variable Y. The formulse for 7 (0|y) for the four different cases are
as follows.

Case of discrete Y and discrete 8: As mentioned in footnote 5 in page 2, distributions
of discrete random variables are most conveniently handled using their p.m.f.’s. Thus let
the parameter space @ be discrete with @ = {601,80,,...}. For k =1,2,... given 8 = 6, let

the population random variable Y be also discrete with the support Y* = {yf, Yk .. } and
respective probabilities {p’f,p’g, .. } such that Yk = 1,2,... and Vj = 1,2,... p¥ > 0 and
Y>1Pf =1Vk =1,2,.... Now let the prior p.m.f. 7(@) be given by m, = P(6 = 6;) and
let Y1 =41, Yo = yo,..., Y, = y, be the observed data, denoted by Y = y, and given 6 all
of which are i.i.d. Y. Then a routine use of (2) yields the posterior distribution of € as:

n k
e [z p
¢ 21‘21 jI[yi=y§“]

Y1 m I, P

ITyi=yk
2> i lwi=uk]

VE > 1 (3)

where I[A] is the indicator function of an event or statement A, meaning that I[A] is 1

if A is true and 0 otherwise. The term []}, p’“z S might require some explanation.
> i=y;

13



The role of this term is same as that of P(Y|©;) in (2). That is here we are to evaluate
PY1 = y1,Ys = yo,..., Y, = 4|0 = 0). Since given 0, Y;,Y5,...Y,, are independent,
PY1 = y1,Ys = yo,..., Yy = 4|0 = 6;) = IIiL, P(Y; = 4:|0 = 6x). Now P( A_yZ\O—
0;) is going to be exactly one of {pl,pZ, .. } Actually it is that pj such that y; = y]-.
Y j>171ys = y}] precisely churns out that j. \V4

Example 5: Let Y denote the number of logical bugs per thousand lines of codes written
by a certain programmer. It is reasonable to assume that Y ~Poisson(\). The problem is
to empirically determine the value of A given some observations on Y. You believe apriori
that A for this programmer is 2, 2.5 or 3 with probabilities 0.2, 0.4 and 0.4 respectively. Now
suppose you randomly select 2 different thousand line codes written by this programmer
and upon examination you found that ¥; = 0 and Y5 = 1. The problem is to update your

A 2 [25] 3
m(A) |[0.2]04]04
the observed data Y; = 2 and Y5 = 3. This posterior computation is summarized in the
following table

initial uncertainty about A\ expressed as the prior p.m.f.

in light of

A7) [ PYM=0,Y,=1]4) | (2)x(3) | 7(A]Y = y)
® | @ (3) (4) (5)

2 0.2 0.0366 0.00732 0.4306

2.5 0.4 0.0168 0.00672 0.3953

3 0.4 0.0074 0.00296 0.1741
Total | 1.0 - 0.01700 1.0

Column (5) is obtained as (4) divided by its total. Column (3) is obtained from Poisson prob-
abilities, like for bexample P(Y; = 0,Y, = 1|\ = 2) = {e 2} {(2/1!)e 2} = 0.1353x0.2707 =
0.0366 etc.. Thus you update your belief about A as in column (5) above from your initial
belief of (0.2,0.4,0.4), after observing the data. Note that since in the data the only values
of Y that were observed were 0 and 1, that tilts the scale substantially towards the smallest
A value considered apriori viz. 2, even with the apriori belief that 2 is least likely of the
values considered for \. v

Case of discrete Y and continuous 8: Distribution of continuous random variables are
most conveniently handled using their probability density functions or p.d.f.°. Thus let
the parameter vector 8 be continuous taking values in the parameter space ®. The prior
distribution in this case will be specified in terms of a p-dimensional (see footnote 3 in page

2) joint p.d.f. of @ = (01,0,...,6,)", say 7(0). Given 0, let the population random variable

Y be discrete with the support y0 = {ylo, y20, . } and respective probabilities {plo,pze, . }

such that VO € ® and V5 = 1,2,... 0 > 0 and Zplpjo =1V0 € ©. Let Y = y be the

9A random variable Y is said to be continuous if its c.d.f. F(y|f) is a continuous function of y. Barring
a few pathological cases the c.d.f. F(y|@#) of a continuous random variable usually admits a first derivative
w.r.t. y. This derivative din(y|0) is called the p.d.f. of Y which is denoted by f(y|@). It is called a
probability density because at a given point y, it gives the amount of probability the random variable
Y gives at a neighborhood of y per unit length of that neighborhood as the length of the neighborhood
shrinks to 0. This interpretation directly follows from the definitions of derivative and c.d.f.. Furthermore
glven the p.d.f. f(y|@) the c.df. can be obtained as [’  f(¢|/8) dt and more generally for any set A,

PY € A) = [, f(y|) dy.
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observed data, and given @ let Y1,Y5,...Y,, be i.i.d. Y. Then the posterior of @ given the
observed data Y = y is found as the conditional density of @ given Y = y, which is denoted
by 7(0]Y = y). The formula for 7(0|Y = y) is as follows:

(0) T, p?

Ty =yk
ijljl[yl—yj]

for( @ TpE i 4o

T(0Y =y) = Vo € © (4)

Note that equation (4) is same as equation (3) except that now the summation has been
replaced by the integral. The proof of the above result is same as that of the Bayes’ theorem.
The numerator of (4) is nothing but the joint density (used in a slightly broader context)
of (8,Y) ¢g(0,y), which is given by P(Y = y|6)7(6), which equals 7(0) ?:lpe

EJ-ZIJ'I[w:y}“]’
following the same logic as in the previous case. The denominator of (4) is P(Y = y)
which is obtained by integrating @ out over its domain ©® from ¢(@,y), which is same as the

numerator of (4), and thus the result follows. \V/

Example 1 (Continued): Suppose we are interested in the probability 7 of a consumer
choosing toothbrush of brand X. For this we observe the brand choice of 12 consumers and
the choice is coded using the random variable Y of Example 1. Thus we have 12 0-1 valued
Y1,Ys, ..., Y, which are i.i.d. with p.m.f. 7%(1 — 7)'¥ for y = 0,1. Now suppose (as in
Example 1 (Continued) in page 10) we find 3 ¥;’s to be 1 and the remaining 9 0’s (it does not

matter for which i’s because of the following). Then []}2, p% et = m3(1 —7)%. Now if
i>1 T lwi=v;

we say that before looking at the data we had no idea aboutj the kind of value 7 will have,

then a flat Uniform|[0,1] prior for 7 might be quite appropriate for modeling this ignorance

. 1 ifo<<nr<1 . .

i.e. let us take w(m) = 0 otherwise as the prior of 7. Then in order to get the

exact expression for the posterior density w(w|Y = y) of 7, by (4), all we have to do is find

Ji (1 — m)? dr for the denominator. Using the so-called S-integrals it may be shown that

Jym¥(1—m)° dr = 32 = 3.4965x107%, so that the exact expression of the posterior density
31—m)? fo<n<

of m based on the observed data becomes 7(7|Y = y) = 2860m°(1 —m)° if 0 < T 1 .
0 otherwise

This posterior density of 7 is plotted in Figure 1 below: s
Figure 1: Posterior of 11

3.0

2860 (1 -m)°
20
l

1.0

0.0
I
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Now essentially all the questions pertaining to 7 will be answered in terms of this posterior
density, which has all the uncertainties regarding the value of 7 directly packed into this
distribution given the observed data. Like for instance (as in Example 1 (Continued) in page
10) if one wishes to obtain the probability of the hypothesis 7 > 0.1, unlike the frequentist
case, now one can say that the chance of this is [, 286073(1 — 7)° dr, which by numerical
integration equals 0.9664. But be careful before jumping into the conclusion that then the
data is saying that almost certainly 7 > 0.1. This is because aprior: we are assuming that
there is a 90% chance of 7 > 0.1 even before observing the data and this prior value has to
be suitably taken into account before concluding the truth about any hypothesis. Bayesian
hypothesis testing precisely does that, which will be taken up in the next section.

Before closing the discussion on this example, we shall provide one more use of the posterior
distribution to emphasize its key role and importance in Bayesian inference. According to
the posterior in Figure 1, a 95% Bayesian interval estimate of 7 is given by [0.0747, 0.5140).
This interval has been indicated by the pair of vertical dashed lines in Figure 1. Unlike the
frequentist case, now this interval estimate has the direct interpretation that, given the data,
there is a 95% chance of 7 falling between the two numbers 0.0747 and 0.5140. \V4

Case of continuous Y and discrete 6: Let 6 be discrete taking valuesin @ = {6, 60,, ...}
and given @ = 0, let the population random variable Y have the p.d.f. f(y|60x) with support
Yk, Now as usual let the prior on 6 be given by 7, = P(6 = 0},) and Y;,Y,,...,Y, bei.i.d.
Y. Then given the data Y = y the posterior distribution of @ is given by:

P(O — 0k|Y — y) — Tk H?:l f(y2|0k)
2i>1 T 1= f(y:l6r)
Again the proof of (5) follows by imitating the proof of Bayes’ Theorem. The numerical
steps involved in computing the posterior in this case is essentially exactly same as that of
the first one viz. discrete Y and discrete 8, except that now for computing the column (3) as
in Example 5, one would use []7; f(vi|0), instead of the earlier [T, P(Y; = y;|6%). Since
computationally these two cases are almost identical we shall skip the numerical example
part for this case and move on to the last case. \V4

VE > 1 (5)

Case of continuous Y and continuous 8: For most practical applications one encounters
this and the second case viz. discrete Y and continuous @, because it is fairly rare to have a
discrete parameter space and thus the first and the third cases are essentially included here for
illustrative purposes. However for parameters which enter the model in a very complicated
form, sometimes one puts a discrete prior on it to make things tractable. Coming back to
the case of interest, let Y7, Y5,...Y, be ii.d. Y where given 8 € ©, Y is assumed to have
the p.d.f. f(y|@) with support V9. Let 7(0) be the prior on 6, which is a joint density
of (61,6,,...,0,)" with support ®. Given observations Y = y, let 7(0|Y = y) denote the
posterior density of @, which is nothing but the conditional density of @ given Y = y. The
formula for this conditional density is as follows:

w0, f(uile)
O =Y) = R TIL, f(nl9) do

Since equation (6) together with (4) will be heavily used in the sequel we first present a
formal proof of (6), which is extremely straight-forward and is just a continuous analogue of

VO € © (6)
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the proof of the Bayes’ Theorem.
T(0Y =y)
. where ¢(0,y) is the joint density of (8,Y) and m(y)
B 9(0,y)/m(y) ( is the marginal density of Y.

because the joint density of (0,Y") is the product of
the conditional density of Y'|0, given by [T\, f (v:|0)
w(0) [T, £(4:10) (since Y1,Ys,...Y, are iid. f(y|@)) and the marginal
Jo 9(®.y) ap density of @, given by 7(0); and the marginal density
m(y) of Y is obtained by integrating € out of ¢(0,y),
the joint density of (0,Y).

To :((g))%:;j?(éi"?) pre ( because as explained above, g (¢,y) =7 (¢) [T f (vilP) - )

proving (6). \V/

Example 6: Let Y;,Y5,...Y, be i.i.d. N(u,0?) where both u and o2 are unknown. Let
0 = (11,0%). So far we have only been dealing with proper priors such that fg 7 (0) df =1
(or for discrete ©, >y~ P (0 = 0)) = Y\~ T = 1). Such priors are also sometimes called
informative priors, which essentially contain an experimenter’s subjective gut-feeling about
the unknown 6. While this is fine and sometimes desirable (the frequentist paradigm does
not allow one to do this and since in many occasions important prior information may be
available, among many others, this argument is also put forth to advocate the Bayesian
methods), there are situations where the experimenter may have no idea whatsoever about
the unknown value of 8. In such situations instead of falling back upon frequentist ideas,
the Bayesian solution is to use non-informative priors. Such non-informative priors are also
called vague or improper or diffuse or reference and more recently default priors. Different
kinds of arguments are given for appropriately choosing a default prior in a given situation
and we shall briefly outline them in a later section. But for the N(u,0?) model, it is now
fairly well-established that the default prior for (i, o) should be

1
m(u,0) x — for —oo < p < ooando > 0. (7)
o

Note that the prior specified in (7) implies

1. m(u,0) is improper in the sense that it is not a legitimate density function, since its
integral is ooc.

2. 1 and o are assumed to be independent apriori, which in turn implies any function
of o such as the variance o2 or 7 = 1/0?, also called the precision parameter are also
independent of p.

3. Prior of u is flat over the entire real line, which is intuitively very appealing as a
non-informative prior for p.

4. Prior of log(o) is flat over the entire real line, yielding the prior on ¢ as 1/o for o > 0,
using the change of variable formula.

5. Using the change of variable formula, the prior on (g, 0?), 7(p,0%) x % for —oo <
p < oo and o2 > 0; and the prior on (u,7), m(@, T) o % for —oo < < 0o and 7 > 0.

17



For convenience, we shall work with the reparameterized version (u,7) called the (mean,
precision) instead of the original (mean,variance) or (mean, standard deviation) parameter-
ization. Thus though our task is to draw inference on (u,0?), we shall do so through the
posterior p.d.f.’s of (u,7), which is slightly easier in terms of their resemblance with the
standard probability distributions. Thus let us begin deriving the joint posterior p.d.f. of
(u,7), denoted by 7(u, 7|Y = y).

Digression: Since it is a case of continuous Y and continuous @ the formula used for the
posterior computation is that given in (6). Now we shall employ a tactic which is routine
in Bayesian posterior calculation. In all the four posterior formula given in (3), (4), (5)
and (6) the major hurdle in posterior computation is the denominator. But what is the
role of the denominator in these formulae? A little closer examination reveals that the main
thing of interest, namely the form of the posterior as a function of 6, is determined by the
numerator. But the numerator by itself is not a legitimate p.m.f. or a p.d.f. because it
does not add or integrate to 1. The role of the denominator is to just do that. That is the
denominator is chosen in such a manner that the r.h.s. of all these formulee add or integrate
to 1. That is the only role the denominator plays in the posterior computation is that of
a normalizing constant, which is free of the parameter of interest 6, such that the sum or
integral of the function of @ in the numerator equals the denominator so that the r.h.s. in
its entirety becomes a proper p.m.f. or a p.d.f..

Thus an explicit determination of the denominator, which is a constant free of 0, is seldom
carried out at the outset for determining the posterior. The form of the posterior as function
of 0 is first studied by writing down the numerator, and very often it is the case that the
form reveals semblance with some known distributions, which are then used to figure out
the normalizing constant if required at all. In the process since the denominator is ignored,
instead of “=" one uses “ox” for the posterior and the numerator. At this juncture a couple
of words about the numerator is also in order. The numerators in all the four cases in (3),
(4), (5) and (6) involve two terms - one involves the prior and the other involves the p.m.f.
or p.df. of Y evaluated at Y =y e.g. [[}-; p’“Z I in (3) and (4) and [T, f(v:|0)

o ilTvi=vk
in (5) and (6). This is called the likelihood function of 6 given the data Y = y and is
denoted by L(0|y)'°. Now with the introduction of the likelihood function and elimination
of the denominator, we have a unified way of writing the formula for the posterior 7 (8|y)

m (0ly) o7 (6) L (0]y) (8)

Now it is possible to give a further succinct formula for the posterior density than (8) in
many cases where the raw data y can be reduced in dimension in terms of what are called
sufficient statistics. This reduction technique is very important because it provides us an
easy handle on analytically tackling the posterior, which otherwise becomes extremely messy
in terms of the raw data y. Presenting this technique at this juncture will lead to a long
digression. Thus this technique has been deferred to Appendix A, and has been referred to
in the text, whenever required. \V/

10A formal definition and interpretation of the likelihood function are provided in Definition A2 and
the paragraph following it, in Appendix A in page 40.
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1
V2mo?
2
1 (y—p

exp {—5 (T) } = (2m) Y2112 exp {—%T (y — /,L)Z} = f(y|u,7) (say), given the observa-
tions Y = y, the likelihood

Coming back to the example, here since Y7,Ys,...Y, i.id. with p.d.f. f(y|p,o) =

L (u,7ly) oc 72 exp{—%T Vi +n@- N)QI} 9)

where v =n—1, 7= 23" gy and s2_; = =37, (y; — ¥)?. Note that the same like-
lihood function has also been obtained in (A1) in Appendix A in terms of (u,0?). The
term in the square bracket in (9) is obtained by expanding the square in ", (y; — p)° =
> {(yi—7) + (T — )} and observing that X7, (3; —7) = 0. Following (8) we get the
form of the posterior 7(u, 7|Y = y) by multiplying the likelihood (9) by the prior of (u, )

mentioned in point 5 following the discussion of the prior on (u, o) given in (7). Thus,
1
T (,TlY =y) x /21 exp {—57 [1/8%_1 +n(y— u)2]} for —co< p <oc and 7> 0. (10)

Equation (10) gives the expression for the bivariate joint posterior p.d.f. of (u,7) given the
data Y = y. It is not normalized but no matter what the normalizing constant might be
its shape is completely determined by the r.h.s. of (10). A three-dimensional plot of this
surface and its respective contours are provided in Figures 2 and 3 below for a hypothetical
data set with n =10, =0 and s2 |, = 1.

Figure 2: Joint p.d.f. Figure 3: Contour Plot
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Though these plots might be useful in getting some idea about the joint behavior of the
two parameters, inference on individual parameters are typically based on their marginal
posteriors. We shall first derive the marginal posterior of 7.

In order to find the marginal posterior of 7 one needs to integrate p out from the r.h.s. of
(10). Note that the term involving u in the r.h.s. of (10) equals exp {—(m’/?) (7 — /,L)Q}.
With p as the variable and 7 as a fixed constant, which it is, given the data at hand,
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this term is easily recognized as the p.d.f. of a Normal distribution with mean 7 and
variance 1/(n7)."' Thus using the fact that integral of a Normal p.d.f. equals 1 i.e.

% exp {5 (= 1)} do =1, we get that [, exp {—(n7/2) (7 — u)*} du= (2r/n)/2r172,
and therefore the marginal posterior p.d.f. of 7 is given by

7 (1]Y = y) oc /% Lexp (—Tl/si_l/2) for 7 > 0. (11)

The density given in (11) is immediately recognized as a Gamma density with o = /2 and
A=vs? [ /2o0r equivalently since Gamma(a = v/2,A = 1/2) is same as x?2, a quick change of
variable 7 +— TI/Sn ; in (1 1) yields the important and interesting result that the marginal
posterior of vs2_,/o? ~ x2. Of course here given the data, s2>_, is a fixed constant and o2
is the random quantity the distribution of a function of which is x? with v d.f.. But it is
worth noticing that in the frequentist theory we have the same result that vs?2 | /o? ~ x2
as the sampling distribution of the sample variance from a Normal population, which is
subsequently used for inference purpose like confidence interval for ¢2. The formula for a
100(1-a)% Bayesian interval estimate using the posterior distribution of o2 is thus going

14 2 14 2 .
to be identical to that of the 100(1-a)% CI of o2 wviz. [X2S"‘1 ,Xjn—l], where x2_ is the
v,l—a/2 v, /2 ’
a-th quantile of x? distribution with v d.f., but as is also mentioned in footnote 11, the
interpretation of the obtained interval here is more direct. If the 95% interval estimate for
0? equals [0.8,1.4] now we can say that given the data, there is a 95% chance of o2 falling

between 0.8 and 1.4, without any reference to other data sets or repeated use of the formula.

Now let us turn our attention to the marginal posterior of . Just as the marginal posterior
of 7 was obtained by integrating p out of the r.h.s. of (10), likewise the marginal posterior
of 4 will be obtained by integrating 7 out of the r.h.s. of (10). The r.h.s. of (10) as a
function of 7 is again immediately recognized as a Gamma density with o = n/2 and \ =

[1/872171 +n (y - ,u)Q]. Now since the integral of the p.d.f. of the Gamma(a,\) distribution
equals 1 i.e. r( 7 JoT 2% e da =1, we get that [g* /2= exp {—%T [1/5%_1 +n(y— M)Q]} dr

n/2
=T(0/2) [[psi +0 G- )]
rior p.d.f. of u can be written as

1 _ o\ 21w/
W(M\Y:y)ocl/1+ <,u Y )] for —oco < pu< o0 (12)

. Thus now, ignoring the constants, the marginal poste-

Sn 1/\/_

Since a t-distribution with v d.f. has the p.d.f. oc (1+#*/v)" “+D/2 the rhs of (12)
is immediately recognized as ¢, density. Thus the marginal posterior of u is such that

Q% ~ t, which can now be used for inference purposes. Again it is worthwhile to draw
2

parallel with the corresponding frequentist result. For unknown 0”, in the frequentist set-
up inference about p is drawn using the fact that - / \/— has a t distribution. In the

1 At this point it is worth mentioning that if o2

and thus 7 were known, inference about p would have
proceeded with its posterior distribution which in this case would have been o exp {—(m'/ 2)(y— ,u)Q}.

Thus the posterior of u would have been N(7,0%/n) and a 100(1-a)% interval estimate for u using this
posterior distribution would have been same as the one provided in (1) viz. §+ 21_4/20 /+/n. But the logic
of this interval estimate, with the same formula, here is completely different, with a direct interpretation.
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frequentist set-up the statistics ¥ and s,_; are the ones which are random and thus this
t distribution refers to a sampling distribution. But here the ¢-distribution refers to the
posterior distribution of a function of the parameter y, where u is the random variable and
given the data at hand, the statistics 7 and s, ; are non-random known constants, as they
should be. Thus though one will get for example an identical interval estimate of y for a
given set of data, its Bayesian interpretation is the one with which most people will feel most
comfortable with. \V/

In this section we have discussed the notion of the posterior distribution in detail. At
this point it is worthwhile to pause for a moment and look ahead to see where we are
heading. In the Bayesian paradigm, the posterior distribution plays a pivotal role, in the
sense that it is argued that whatever an observed set of data has to say about the unknown
parameters, all this information is packed into the posterior distribution and one really
does not need to know anything else. However there are specific inferential problems like
estimation, hypothesis testing and prediction which needs to be solved, and how one can use
the posterior distribution in addressing these issues is yet to be discussed. We take up these
issues in section 6 after a quick introduction to statistical decision theory in the following
section. Then there is this thorny issue about the choice of the prior. While much is available
in the literature, here we shall very lightly touch upon the topic in §7.

Finally there are serious computational issues involving numerical calculation of the pos-
terior distribution. Essentially the posterior computation requires numerical calculation of
typically high-dimensional integrals. Recent years have witnessed an explosion of develop-
ment and application of such numerical methods, broadly coming under the umbrella of
what are called Markov Chain Monte Carlo or MCMC methods. These methods bring with
themselves their own problems like their implementations and convergence issues. We shall
take these up as a subject in itself, for which there will be a separate set of small lecture
notes and other concise but very well-written study materials.

5 Statistical Decision Theory

Most of the problems statisticians indulge in like estimation, hypothesis testing, model selec-
tion, prediction etc. can be mathematically formulated as one of taking a decision in the face
of uncertainty. In this section we shall formulate and provide (Bayesian) solutions to these
statistical inferential problems as one of Decision Theory after providing a brief overview
and some examples of the elements of Statistical Decision Theory.

A decision problem is formulated in terms of the triplet (0, .4, L), where © denotes the set
consisting of all possible “states of nature” (but which one is typically unknown), A denotes
the set of all possible actions or decisions that one might take for the decision problem at
hand, and L is a real valued function with a finite lower bound defined on the domain 8 x A
with the interpretation that for # € © and a € A, L(f,a) denotes the amount of loss one
will incur if one takes action a when the state of nature is 6.
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Example 7: Suppose one is considering investing Rs.1000 for one year either in the stock
market or by depositing it in the post-office for a fixed one-year term deposit at an interest
rate of 6% per annum. The stock market will yield a net of either 20% gain or 10% loss on
investments after one year. The decision that needs to be taken is whether to invest that
Rs.1000 in stock market or post-office. This problem in the above notation can be formulated
as follows. Here there are two unknown states of nature viz. the stock market will yield a
gain, say 6, or it might net a loss, say 6, (the return from the term-deposit in post-office is
guaranteed, thus it need not figure in the unknown states of nature). Let © = {6, 6,}. Now
there are two possible actions viz. action a;: invest in the stock-market or action ay: invest
in post-office. Thus let A = {a;,a2}. Now we need to figure out the loss function for each
possible (01, a;) pair for ¢, j = 1,2. This loss function L(f, a) is given in the following table:

a—
0 \L ai az
0, -200 | -60
0o 100 | -60

We shall get back to the issue of taking the optimal decision shortly after providing a couple
more examples on decision problem formulation in terms of the triplet (0, .4, L). v

Example 8: Suppose before getting out of your home in the morning on a certain day you
are to decide whether you should carry your umbrella along with you or not. You envisage
that getting wet is twice as inconvenient as needlessly carrying an umbrella around. For this
problem, © = {6,605}, where 6; denotes the state of nature that it will rain and 6, denotes
that it will not rain; A = {ay, as}, where a; denotes the decision, carry the umbrella and as

denotes, do not carry it; and the loss function L(6, a) is given in the following table: \V/
a—
0 \L ap | Qo
61 0 |2
0 110

Example 9: Suppose a pharmaceutical company is considering launching a new pain-reliever
in the market. But before doing so, it needs to get an idea about the proportion of the market
this new pain-reliever is going to capture. Let 6 denote the actual proportion of the market
that this new pain-reliever is going to capture and let a denote the company’s estimate of
this f. Thus here © = A = [0, 1]. The company elicits that the loss will be 1.5 times more for
over-estimation in terms of cost of production, unsold inventory etc. than under-estimation,
in which case the only loss is in terms of missed opportunity. Thus the company puts forth
. | (@—a) if0>a

the loss function L(6,a) = { 15(a—0) iff<a \V/

Now how does one take the optimal decision? There are essentially two approaches. The
frequentist approach called the Minimax approach advocates taking that decision which
minimizes the maximum loss, calculated over all possible states of nature. Mathematically
the minimax decision rule is that action which equals Arg. Min . ;MaximumyegL(f, a). In
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Example 7, the maximum losses one can encounter for a; and ay are 100 and -60 respectively.
Of these two since the minimum occurs for a, the minimax decision for Example 7 would be
to invest Rs.1000 in the post-office. Like wise the minimax decision in Example 8 would be
to carry an umbrella, which is easy to see, and the minimax decision in Example 9 would be
a = 0.4. For Example 9, for a fixed a € A = |0, 1], a simple geometric plot of L(f, a) against
6 € © = [0,1] shows that the maximum loss is Maximum{1.5a,1 — a} which after a small
1—a ifa<04

150 ifa>04’ and this maximum loss is minimized

step of algebra can be shown = {
when a = 0.4.

Bayesians always deal with uncertainties by modeling it using a probability distribution.
In a decision problem characterized by (O, A, L) one is uncertain about the state of nature
which takes values in ©. Thus it is only but natural to model one’s uncertainty regarding 6
using a probability distribution, say 7*(6), on 6 with support © and then chose that action
a € A which minimizes the Bayesian Erpected Loss given by Er-) [L(0,a)], where EI:]
denotes the mean or expectation operator. FEJ-] is subscripted with 7*(6) to indicate the
fact that the expectation of L(6,a) is taken over 6 using its distribution 7*(6), and thus
depends on 7*(f) for every fixed a € A. Thus minimizing the Bayesian Expected Loss
criterion calls for calculating Eg-(g) [L(6,a)] for every fixed a € A, once the uncertainty
about the value of # has been modeled using 7*(6), and then it suggests taking that decision
a which has the smallest Bayesian Expected Loss. Mathematically this decision is same as
Arg. Min,e 4 Er-(9) [L(6,a)]. This is the Bayesian solution. From now on by expected loss
we shall mean Bayesian Expected Loss.

Example 7 (Continued): Suppose based on one’s experience with the stock market one
thinks that there is 60% chance of it going up next year and thus there is a 40% chance of
incurring a loss. Based one these quantitative uncertainties one finds that the expected loss
of action a; equals -200x0.6+100x0.4=-80 and that of action as equals -60x0.6-60x0.4=-60.
Thus the optimal Bayesian decision would be to invest that Rs.1000 in the stock market. s/

Example 8 (Continued): Suppose the weather forecast states that day that there is a
20% chance of rain. Then the expected loss of carrying an umbrella or action a; would be
0x0.24+1x0.8 =0.8, and that for not carrying an umbrella or action ay would be 2x0.24-0x0.8
=0.4. Since the expected loss in not carrying an umbrella is smaller, the optimal Bayesian
decision would be to not to carry an umbrella. \V4

Example 9 (Continued): Based on previous experience it has been found that a newly
introduced pain-reliever typically tends to capture between 5% and 10% of the market. Also
it appears that any value in this range is equally likely to occur. Based on these information
the uncertainty regarding the value of # may be modeled using a Uniform[0.05, 0.1] distribu-

if 0.05 < 8 < 0.
tion which has the p.d.f. 7*(0) = { 20 if0.05<6<0.1

0 otherwise . Thus the expected loss is given

by
20 [s(0 — a) df = 0075 —a if 0 < a<0.05
20 [1.5 [4s(a — 0) dO+
Ere9)[L(0,0a)] = f"-[l(e f)g;(ge] ) = 250> —3.5a+0.1375 if 0.05 < a < 0.1
30 fyos(a — ) df = 1.5a —0.1125 if a > 0.1
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This expected loss is plotted in Figure 4 below:
Figure 4: Expected Loss of Example 11
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The entire right tail has not been plotted because it is clear from the above expression
(and also the plot) that it is monotonically increasing. Thus the expected loss is going
to be minimum for some some a € [0.05,0.1]. The exact value of this ¢ can be found by
differentiating 25a® — 3.5a + 0.1375, which is E) [L(6,a)] for 0.05 < a < 0.1, w.rt. a
and equating it to 0, yielding the optimal Bayesian solution as a = 3.5/50 = 0.07 as an the
estimate of 6. \V4

Examples such as above involve what is called a “no-data” situation, while the subject
matter of statistics deals with the problem of taking decisions in face of uncertainty with
some data at hand. In decision theoretic parlance this business of collecting observations,
which carry some information regarding the unknown state of nature 6 is called sneaking into
nature. The real difference between the two paradigms (frequentist and Bayesian) become
apparent in presence of data. It is not just a methodological issue of Minimax versus Bayesian
Expected Loss. The philosophical standing itself of the two paradigms are different.

Thus now for the decision problem (©,.4, L) suppose we have sneaked into nature and
collected some observation Y!? whose c.d.f. F(y|f) depends on the unknown 6. Let Y
denote the sample space of possible values Y can take. Now a decision ¢ is defined as a
function from the sample space ) to the action space A denoted as § : Y — A, with the
understanding that if one observes Y = y, then one takes the action or decision §(y), which
is a member of A. In the frequentist set-up the problem now shifts from taking an optimal
action a to that of choosing an optimal decision §(y), and thus complicating the problem
further, while not much changes in the corresponding Bayesian set-up.

In the Bayesian frame-work since the criterion of choosing an optimal decision is the one
which minimizes E, ) [L(0, a)], the Bayesian Expected Loss, the solution is straight forward.
In the “no-data” case we used the prior w(6) for 7*(f). When we have the observation Y = y,

12This notation and also § instead of @ might look like we are implying a single observation and a scalar
0. But that is not the case, the theory applies equally well for multiple observations with a vector valued 6.
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since we have updated our uncertainty regarding 6 in terms of its posterior distribution
7(0]Y = y), all one needs to do now is compute the Bayesian Expected Loss using this
posterior distribution instead i.e. use 7(0|Y = y) for 7*(#) in the formula of the Bayesian
Expected Loss, and then take that decision which yields the smallest expected loss.

Example 8 (Continued): Let the loss function and the prior be as before. Now suppose
you sneak into nature and check-out whether it is cloudy or not. This now becomes your
observation or data. In order to compute the posterior probabilities of whether it is going
to rain or not, now you need a model. Recall that the two states of nature that we are
concerned with are #; and 6, denoting “Rain” and “No Rain” respectively. Suppose you
sneak out of your window and find that it is cloudy, and let this event be denoted by C.
Thus now as a model you have to specify the probabilities of the observation C' for each of
the two states of nature. Since rain cannot happen without cloud it is only natural to assume
that P(C|6;) = 1. Now suppose based on your past experience you have found that on 40%
of the days when it did not rain, the sky was still cloudy. This gives P(C|f;) = 0.4. Now
with all the elements in place, let us compute the posterior probabilities of #; and 6, given
the observation C. By (2), and the prior probabilities of “Rain” and “No Rain”, which are
based on the weather forecast of that day, which stated that there is a 20% chance of rain,

= =0.384

P(91|C) = P

and thus P(6;|C) = 1 — 0.3846 = 0.6154. Now based on this posterior distribution, the
expected loss of action a;, that of carrying an umbrella, is 0.6154; and that of action as, not
carrying an umbrella, is 2 x 0.3846 = 0.7692. Therefore the optimal Bayesian action to take
would be to carry an umbrella, because it has smaller expected loss. \V/

Example 6 (Continued): Given Y;,Y;,...Y,, iid. N(u,0?) where both y and o? are
unknown, suppose we wish to obtain a point estimate of the unknown 2. In order to
formulate this as a problem of taking a decision we need to introduce its three elements, of
which obviously © = A = [0,00). Now for the point estimation problem, where we wish
to estimate an unknown scalar @ by a, the standard loss function that is employed is given
by L(#,a) = (6 — a)?, called the squared error loss'®. For the optimal Bayesian point
estimate, we choose that a as an estimate, which minimizes Ery) [(f — a)?], which is the
expectation of (§ — a)? taken w.r.t. m(f|y), the posterior distribution of # given Y = y.
It is shown in §6, that the a which minimizes E.(y) [(f — a)?] is the posterior expectation
of 6 denoted by Ergy)[0] = [o 07 (0ly) df. If we work with the non-informative prior on
(,0) as in (7), then according to equation (10) since the posterior distribution of 7 = 1/0?

13This squared error loss function is the mother of the Mean Square Error (MSE) criterion for point
estimation in the frequentist framework. If a is replaced by the decision rule §(Y') and then one takes the
expectation of the squared error loss w.r.t. the (sampling) distribution of Y then one gets the MSE of the
decision rule or estimator §(Y). However in the Bayesian framework since one does not average over the
observation Y, the criterion of minimization is not MSE but the expectation of the squared error loss w.r.t.
the posterior distribution of 8 given Y = y.
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is Gamma(a = v/2,\ = vs?2_,/2) the posterior mean of 02 = 1/7 is given by

vs2_1/2 e e 1) vs2_ /2 Pop(r
( PE’E)) /o ¢ Texp (_7”52—1/2) dr = ( FEZ)) (1/8121(12/2)"/)2—1 = 59

Thus the optimal Bayesian point estimate of o? under the squared error loss is given by
2 1

Sn—o = w5 i (Yi — 7)>. \Y4
Example 1 (Continued): Based on the data that 3 out 12 consumers chose brand X
toothbrush, we wish to find a 95% Bayesina interval estimate of 7. Actually the numerical
solution to this problem wviz. [0.0747,0.5140] has already been mentioned in page 16, with
the interval shown with two vertical dashed lines in the posterior of 7 (given this data and a
non-informative flat prior on 7) in Figure 1. Here we provide a decision theoretic justification
of this interval estimate.

Thus as usual let © = [0, 1], the set of values the unknown parameter 7 can take. In this
case the action space needs to be defined with some caution. Since we are interested in an
interval estimate our eventual decision would be in the form of a subset A of [0, 1]. However
since the interval estimate must be such that it has a posterior probability content of 95%,
we shall confine ourselves only to those subsets of [0, 1] such that [, 7(7|y) dm = 0.95. One
can meaningfully talk about this integral, only for “measurable” A’s (do not bother if you
do not know what “measurable” means, it just ensures that we can talk about integrals
over these sets). Thus A = {measurable A C [0,1] : [, 7(7|y) dm = 0.95}. A natural loss
function in the case of interval estimate is its length. Thus let L(w, A) = [, dr, which gives
the length of the set A. Note that this loss function does not depend on 7 (that 7 in the
integral is just a dummy variable) and thus the Bayesian expected loss is same as the loss
function itself. We shall show in §6, that the solution of this problem i.e. the set A € A with
minimum [, dr is of the form A = {r : 7(7|y) > k} where the constant k is determined by
the equation [( . (xy)>k} T(7|y) dm = 0.95. Such an interval estimate is called 95% Highest
Posterior Density (HPD) Credible set.

An algorithm can be easily worked out for unimodal densities which simultaneously gives
the value of k£ together with the optimal 100(1- a)% HPD credible set for any given a. A
numerical implementation of this algorithm for this example churned out the value of £ as
0.59 and the interval as [0.0747,0.5140] for o« = 0.05. This value of k is indicated by the
horizontal dotted line in Figure 1. v

We shall end this section after providing a very brief account of what one does in the
frequentist decision theoretic set up. Since the frequentist is interested in the behavior of
a decision J(Y’) over repeated sampling, s/he first computes the quantity EgL [6,(Y)],
called the Frequentist Risk, denoted by R(@,6) w.r.t. the sampling distribution of Y.
Since this is a function of @, unlike the Bayesian Expected Loss, for a given decision, the
task of choosing an optimal decision is in general a much harder problem for the frequentist.
At this point the frequentist either chooses a decision rule following the Minimax principle,
which seeks to minimize the maximum risk; or invokes some other principle like invariance
to deal with R(8,); or at last s/he puts a prior 7(0) on 6, computes what is called Bayes
Risk, defined as r(7,d) = [g R(0,6)m(0) df, and then chooses that decision which has
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the smallest Bayes risk, which is possible because unlike the frequentist risk, Bayes risk is a
single number. Such a decision rule which minimizes the Bayes risk, is called Bayes rule.
Obviously for the “no-data” problem the two criteria of minimizing the Bayesian Expected
Loss and Bayes risk are one and the same and thus both of these two criteria yield the same
optimal decision. This connection goes even deeper and in general it is fairly easy to show
that both these criteria yield the same optimal decision for any given set of data, providing
a connection between the two paradigms. However it is usually computationally much easier
to determine a rule that minimizes the Bayesian Expected Loss than Bayes risk. In any case
from this point on we shall stop mentioning frequentist criteria and will solely concentrate
on the Bayesian methods, with only pointing out their connections, when there is one

6 Bayesian Inference

Structurally this section is going to be similar to §2. Thus we shall pick up the standard
inference problems one by one and will provide general Bayesian solutions to these problems.
Also §2 just gave glimpses of the frequentist methods without going into any kind of details.
But this being a notes on Bayesian Statistics, here we shall provide a more detailed discus-
sion of the methods with proofs wherever needed. Though we have already had a brush with
some of these inference problems under the Bayesian umbrella in some of the examples in
the previous sections, here we shall discuss the methods of obtaining Bayes rule, which as
mentioned above is equivalent to minimizing the Bayesian Expected Loss, in a more system-
atic manner for general problems in a Bayesian decision theoretic frame-work, collected at
one place. Also without loss of generality here we shall assume that the unknown parameter
0 is continuous. For discrete @ one just replaces the integrals by summation and all the
results essentially follow.

6.1 Point Estimation

Philosophically many Bayesians do not believe in point estimation. Because to a Bayesian,
you are uncertain about the value of 8, and this uncertainty has been capsuled in the posterior
distribution 7(@|y) of 6. Thus any real further action should use the posterior distribution
as a whole instead of recommending a single value from it. Nonetheless there are situations
where the real action itself might be choosing a value from the posterior distribution. Also
there is this illustrative point of how can a Bayesian tackle this particular inference problem,
if challenged with. These considerations make the discussion of the topic of Bayesian Point
Estimation worthwhile.

Proposition 1: Let 6 be a scalar with posterior p.d.f. 7(f|y) and the loss L(f, a) be squared
error i.e. L(0,a) = (§ — a)” with A = ©. Then the Bayes rule for a is given by Er(y) (0],
which is the expectation or mean of 6 according to its posterior distribution.

Proof: In order to obtain the Bayes rule, we are to find the a which minimizes Ey gy [(6 — @)?].
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Let 0(y) = Ergy) [0]- Then Va € A

Er oy [(9 - G)Q]
= E.oy) [{(9—6( )+ (5(y>—a>}2]

= Ergy) [( 2] )* + (6(y) — a) Exay) [(6 — 5(9))]

(because (0(y ) a) is a constant free of 6.)
= Exiy) |0~ )] + (

(because Er( e|y ) 16— ( ))] = Exoy) 16] — Enoiy) [0(y)] = 6(y) — 6(y) = 0.)
> Ergy) [ )2] (because (6(y) — a)® is always > 0.)

Thus Va € A, Exgy) [(0 — a)?] > Ex@py) [(0 - (5(y))2] with the equality attaining when a =
6(y) = Er@y)[0]. Therefore the decision which minimizes the expected squared error loss
is the posterior mean. \V4

Example 6 (Continued) in pages 25-26 gives an example as an illustration of this result.
Actually the above result is valid even for the multi-parameter case with general quadratic
loss, as stated in the following Proposition.

Proposition 2: Let 0 be a p x 1 vector of unknown parameters with posterior p.d.f. 7(0|y).
Let the loss in estimating @ by a € A = 0O, L(0,a) = (0 — a)'Q(0 — a) for some p x p
positive definite matrix . Such loss functions are called Quadratic Loss. Then the Bayes
rule for a is given by En(0|y) [6], which is the co-ordinate-wise expectation or mean of the
components of @ according to its posterior distribution.

Proof: In order to obtain the Bayes rule, we are to find the a which minimizes E/_ g, (0 — a)?].

Let 6(y) = E 01y [0]. Then Va € A
F L0y (0 - a/Q(0 - a)
= E 9y [((0-5) + (6) - )} Q{0 - 5(y) + (5(y) - a)}]
= B,y [(0-361)Q(0-5v)]+(5(y)—a) Q(4(y) —a)
(because as in the scalar case, (6(y) — a) is a constant free of @ and E 9y [(0—48(y))]
> B, gy [(0—6(v)) Q60— d(y))]
(because (6(y) —a)' Q (6(y) — a) is always > 0 as Q is positive definite.)

showing as before that the minimum expected loss getting attained by d(y) = E 9y 4],
the co-ordinate-wise posterior mean. Note that this is true for any p X p positive definite
matrix Q and thus the estimator §(y) does not depend on Q. \V4

Now instead of quadratic loss sometimes one might envisage an absolute error loss. The
following proposition pertain to such situations for scalar-valued parameters.

Proposition 3: Let 0 be a scalar with posterior p.d.f. 7(f|y) and the loss function L(6, a)
be absolute error i.e. L(,a) = |0 —a| with A = ©. Then the Bayes rule for a is the posterior
median, denoted by 6, where @ is such that P(f < f|y) = P(6 > ]y) = 0.5.
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Proof: Let a € A be such that @ > §. Then

. é—aN if€<0~
L(6,0) — L(0,a) =< 260 —~(0+a) ifo<6<a
a—0 if @ >a

Now for 6 < a since 20 — (6 + a) < a — @ it follows that
L(6,0) — L(,a) < (6 — a)l 0 5(0) + (a— é)I[é,oo) (0)

where the function I4(z) with x as its argument is the indicator function of the set A defined

as Ia(z) = { (1) i; ; ﬁ . Now taking expectation w.r.t. 7(f|y) on either side yields

Erory) [L(0,0) — L(6,a)| < 0.5(6 — a) + 0.5(a — §) =0

establishing that the posterior expected loss of 0 is as small as a. A similar argument shows
the same for ¢ < 6. Thus the expected absolute error loss is minimized for the posterior
median. \V4

Example 1 (Continued): Under the absolute error loss the best estimate is the posterior
median. For the posterior depicted in Figure 1 it may be numerically computed that the
median = 0.2753. For comparison, under the squared error loss the mean of the posterior is
0.285714, which for this example can be analytically computed. \V4

An extension of the above result deals with the problem of general linear loss, such as one
encountered in Example 9, which we state without proof.

Proposition 4: Let 6 be a scalar with posterior p.d.f. 7(f|y) and let the loss function

_J c(@—a) if>a
L(f,a) = { c(a—0) if<a’ for some known constants ¢y and ¢;. Then the Bayes rule

for a is given by the ¢y/(co + ¢1)-th quantile of 7(0|y). \V/

Example 9 (Continued): In this new pain-reliever introduction example, where a company
is interested in estimating the proportion of market the new pain-reliever is going to capture,
we had a loss function which was same as that in Proposition 4, with ¢; = 1 and ¢y = 1.5.
Thus a routine application of the above result states that the optimal estimate in this case is
given by the 1/2.5=0.4-th quantile of the posterior or in case there is no data, as in Example
9, the prior distribution. Recall that the prior for this example was Uniform[0.05,1] and
thus its 0.4-th quantile or the 40-th percentile is given by 0.07, which is same as the answer
we had already obtained (see page 24) using a direct method which did not use Proposition
4 above. \V/

6.2 Interval Estimation

Though we have named this subsection as above, it is more of a legacy of the reminiscent
frequentist past. This is because what we are interested in doing here is provide a set of
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values which has some pre-assigned (typically high) probability of containing the value of
0 given y. Such sets are called credible sets and the chance coefficient associated with
it is called its credibility. Formally a set C C 0, is called a 100(1-a)% credible set if
P € Cly) = [o7(0ly) dO = 1-a, for 0 < a < 1. Now there is no reason why such a
credible set would be an interval. In principle, it could be any arbitrary set, thus a more
appropriate name for this subsection would be “Credible Set Determination”.

The issue of the structure of the Action space .A in this kind of credible set determination
problem was briefly touched upon in Example 1 (Continued) in page 26. Here we essentially
provide the same formulation in a systematic general context. The final action or decision
that will be taken in the credible set determination problem is going to be in the form of a
set C C ©. Since we are only interested in credible sets with credibility 1-a;, we need only
consider those subsets of C C © with [~ 7(0|y) d@ = 1-a. However one can meaningfully
talk about the credibility of a set C as expressed in terms of an integral as above if and
only if, it is measurable. Thus formally for the credible set determination problem, A
={measurable C C © : [ 7(6]y) d6 =1 - a}.

Now for some fixed o € (0,1) we are interested in obtaining an “optimal” Bayes rule of
choosing a C from A, where the optimality is determined in terms of some loss function.
Since the credibility can be increased by enlarging the size of a set, for a fixed credibility, it
is thus natural to seek for a set whose size is small. Thus it is very natural to express the
loss in terms of the size of the action C, with the understanding that larger the size more
is the loss and an action will be considered to be “optimal” if it has the smallest loss. For
scalar 6 the size of a credible set C' is its length, for a two-dimensional @ the size of C' would
be its area, for a three-dimensional 8 the size of C is its volume and in general for a 0 of
arbitrary finite dimension p, the size of a credible set C'is simply given by [ d6.

However this notion of size can be generalized and one can define an abstract size of a set
in terms of a real-valued size function s(@) defined on @ and size of a set C as [ s(0) d6.
In most practical applications, as in Example 1 (Continued) in page 26, s(@) = 1 V0 € ©
yielding the usual size of set in terms of its length/area/volume/hyper-volume. But there
is no harm in deriving the Bayes rule for this more generalized notion of the size of a set.
With this abstract definition of size, now the loss function for this credible set determination
problem is defined as L(6,C) = [ s(0) df. Note that this loss function does not depend
on @ (the 0 in the integral is just a dummy variable of integration), and thus the expected
loss is same as the loss itself. Thus now the problem of optimal credible set determination
is formulated as determining a C from A= {measurable CCO: [on(fly)do=1- a}
such that [¢rs(@) d@ is minimum, a solution of which is provided in Proposition 5 below.

Proposition 5: Let C* € A be as C* = {0 € © : 7(0|y) > ks(6)}, where the constant k
is determined from the equation [+ 7(60|y) d@ = 1 — o, which C* has to satisfy if it were
to belong to \A. Now let C' be any arbitrary set in .A. Then [ s(0) d6 > [~ s(0) d.

Proof:

/Cs(o) 6 — /C* 5(6) do
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- /Cnc*” 5() dO—/C*nCC 5(8) d@

(by eliminating the common part /Cﬂ c s(0@) dO present in both the integrals.)

T
> - . m(0ly) dO — 0ly) do
> fopee @m0 [ w6 as)
(because, in C*°, s(0) > 7(0|y)/k, while in C*, —s(8) > —7(0|y)/k.)
1
= |6l do - [.x(6ly)
(by adding the common part /Cr]C’* 7 (0|y) dO to both the integrals.)
1
= 1l0-0)-(1-a)
since both C and C* are in A, m(0ly)dd = | , 7(0ly)=1-q.
C C
=0
thus establishing [~ s(0) d@ > [~ s(0) dO \V/

Proposition 5 thus shows that the optimal C in the action space A that minimizes the loss,
defined as the size of C, is of the form C* = {6 € ® : 7(0|y) > ks(0)}, where the constant
k is determined from the equation [+ 7(0|y) d@ = 1-a. When 5(0) =1 V0 € O, as is the
case in most practical applications, this optimal C is called a 100(1-«)% Highest Posterior
Density (HPD) Credible Set, as it consists of those points in @ where the posterior density
is higher than the points which do not belong to it. The question, “How high is high?” is
determined by the constant k, whose exact value depends on the amount of credibility 1-a
associated with the HPD credible set. In general larger the credibility smaller is the value
of k£ and thus larger is the size of the HPD credible set.

An algorithmic implementation for computing such 100(1-«)% HPD credible sets for uni-
dimensional 6 is as follows. Let C(k) = {0 € © : w(0ly) > k} and P(k) = [o(, m(0]y) db.
Let mmax = Maximumyeem(f|y). If 7(0|y) is unimodal mmax is same as 7(0|y) evaluated at
its mode, otherwise if 7 (f|y) is multimodal, evaluate w(f|y) at each of its local modes and
then chose the maximum of these 7(f|y)’s as mmax. Note that P(0) =1 and P(mmax) =0
and for intermediate values of k, first C(k) can be determined by solving for 7(f|y) = & and
then considering the (in the multimodal case, union of) interval(s) between these solutions,
and then P(k) can be computed by numerically integrating 7(f|y) on C(k). Thus using the
extreme values 0 and mmax and the above algorithm for computing P(k) for intermediate
k’s, the 100(1-a)% HPD credible set can be determined by solving P(k)=1-« using regula
falsi.

Example 6 (Continued): Suppose we are interested in obtaining a 100(1-«)% HPD cred-
ible set for p with Y1,Ys,...,Y, i.id. N(u,0?) with both p and o unknown, using the
non-informative prior on (i, o) given in (7). The marginal posterior p.d.f. of p is given
in equation (12). Since this p.d.f. is symmetric about and unimodal at 7 the 100(1-a)%
HPD credible set for ;1 must be of the form 7 &+ £ for some constant k£, where the constant
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k is determined from the equation fgfkk m(uly) dp = 1-a. Now since we know that the
posterior of y is such that (4 —7) / (sp_1/+/n) ~ t, 1, a simple change of variable in the
above integral equation yields k= t,_11_q/2 (Sn—1/v/1), where t,_; , is the a-th quantile of
a t distribution with (n — 1) d.f.. Thus the 100(1-o)% HPD credible set for u is given by
y + tn—l,l—a/2 (Snfl/\/ﬁ)- \V

100(1-a))% HPD credible set for the 7 of a Binomial has to be found numerically as men-
tioned in Example 1 (Continued) in page 26, and likewise for the o2 of a N(u,c?) model.

6.3 Hypotheses Testing

As has been mentioned once before, in the Bayesian frame-work one need not choose between
only two possible hypotheses the null and the alternative. Here one can simultaneously test
or choose among any finite assortment of mutually exclusive or disjoint hypotheses. However
since frequentist hypotheses testing has been developed for the null and alternative pair, we
shall first develop Bayesian hypothesis testing in this classical set-up.

In order to provide a decision theoretic solution for testing Hy : 8 € © versus H; : = O,
we need to introduce the triplet (©,.4, L), where © is already given. In the hypothesis
testing situation since one can take only one of the two possible final decisions, A = {ag, a1},
where a¢ denotes the decision, “Accept Hy” and a; denotes the decision, “Accept H;”. Now

intuitively in order to give a symmetric treatment to the two hypotheses, one should work
with a so-called 0-1 loss function defined as L(0, a;) = (1) i z i 81 for i = 0,1. However
7
if one really wants to met out a favorable treatment to one of the hypotheses, as in the
frequentist set-up, one can work with a slightly more generalized version of the 0-1 loss
C; if0 ¢ 0,
0 iff €
as in the frequentist set-up, if Accepting H; when it is false (Type-I error) is considered
to be more serious than Accepting Hy when it is false (Type-II error), one should choose
C1 > (), with their relative values chosen depending on the relative degree of severity of the
two types of errors. Note that even how this asymmetric treatment to the two hypotheses
can be directly handled in a quantitative manner in the Bayesian set-up, without resorting
to indirect measures like error probabilities.

function given by L(0,a;) = for some C; > 0 for ¢ = 0,1. For instance,

The Bayes rule for choosing the optimal decision is determined by choosing that action a;
which has smaller expected loss. According to the general 0-C; loss function E g ) [L(6, ap)]
= Cy(1 — P(06y]y)) and E. 0y [L(0,a,)] = Ci1(1 — P(00Oy]y)). If Oy and ©; are such
that ® = ®¢ U ®, as would usually be the case with two hypotheses, then according to the
expected loss computed above, one would take action a; or “Accept H,” if

POy G

———~~ > — or equivalently if P(©® >

i

—_—. 13
Co + Cy (13)

Above decision looks fairly intuitive, in the sense that it calls for taking the action a, if the
posterior probability of ®; is large or its value is large compared to that of the posterior
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probability of ®, and the issue of how large is large settled by the loss function.

Example 6 (Continued): Consider a situation where Y}, Y5, ..., Y, iid. N(u,o?) with
Ho:p <o
Hy:p>po
That is here ©y = (—o00, 1] and ©; = (g, 00). As mentioned in footnote 11 in page 20, the
posterior of 4 in this case is N (¥, 0%/n). Thus according to (13) one should, “Accept H,” or

“Reject Hy” if
-7 C
PO ly)=1-3 (“0 y) N

known o2, and we are interested in testing the hypotheses for some known p.

o / \/T_l Cy+Cy ’
where ®(-) is the standard Normal c.d.f., or equivalently if

_ o
Yy > Ho + ZCo/(Co—I—Cl)%

where z, is the a-th quantile of the standard Normal distribution. Note the similarity of the
above Bayesian decision rule with the frequentist most powerful fixed significance level test.
Both of them are exactly of the same form. In the frequentist case, the fixed significance level
is determined subjectively in an ad hoc manner, while in the Bayesian case it is determined
by the loss function, and a systematic subjective input which is specified in terms of the
prior distribution. The prior input is not clear in this example as we are dealing with a
non-informative prior, but in general the above comment holds true. We close this example
after drawing a parallel with the observed significance level or p-value and the posterior
probability of the null hypothesis. For this example the p-value is given by

P(Y >7|Hy) =1— (Z;\;‘g) - (’;0/\_/@ — P(6oly).

The last but one equality follows from the fact that 1 — ®(z) = ®(—%). Thus at least in
this example the p-value gives the posterior probability of the null hypothesis, and thus one
can give a Bayesian justification of its interpretation as credibility of the Hy,. However such
parallels to the frequentist results for Bayesian hypothesis testing is more of a fluke than a
rule. \V4

Although the Bayesian decision theoretic solution to standard statistical hypothesis testing,
specified in terms of a null and an alternative, is as simple as the rule specified in (13), and
for the case of choosing between a set of multiple hypotheses one should still use a decision
theoretic solution; a special Bayesian technique is available for the standard statistical hy-
pothesis testing problem involving a Hy and a H;. Recall the hypothesis testing example
mentioned in Example 1 (Continued) in page 16, where the posterior probability of the hy-
pothesis H : m > 1 was found to be 0.9664, and it was mentioned that part of the reason
for such a high posterior probability was its prior probability which was 0.9. Now we shall
discuss a Bayesian method which attempts to eliminate this prior bias in deciding between
the truth of the two hypotheses Hy and Hy, based on the data.

Let ag = P(®qly) and a; = P(O,]y) respectively denote the posterior probabilities of the
two hypotheses Hy and H;. Also let my and m; denote their respective prior probabilities.
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Then the posterior (prior) odds ratio of Hy to H; is given by ap/ay (mo/m). Now let B
denote the ratio of this posterior odds to the prior odds i.e. let B = ig;al B is called the
Bayes factor in favor of Hy. While deciding between two hypotheses the odds ratio gives
a slightly clearer picture than the two raw probabilities. Because if ag/a; = 5, it means
that given the data, Hy is 5 times more likely to be true than H;. Now the Bayes factor can
sometimes be interpreted as this odds ratio as purely given by the data.

This interpretation is easiest to see when both Hy and H; are simple hypotheses i.e. when

= {6y} and ©; = {0:}. In this case by (2), ap = moL(Ooly)/ {moL(Oo|y) + m1 L(6:]|y)}

and ag = m L(041]y)/ {moL(0o|y) + m1 L(01|y)}, where L(0|y) is the likelihood function of @
given the data y. Thus here B = L(6q|y)/L(01|y), which is a number free of the prior.

In general however the Bayes factor depends on the prior distribution given over ®, and
O;. To see this, let © = ©yJ O, and write the prior 7(6) on © as 7(0) = mgo(0)I g, (0) +
m1(0)Ig, (0), where the indicator function I4(x) is as defined in page 29, my + m = 1,
and each g;(0) is a proper density on ©®; i« = 0,1. Then a simple calculation shows that
B = [g,L(0]y)g(0) d6 /f@1 L(08|y)g:(0) dO. Because of the involvement of gy and g; in
b, this cannot be viewed as a measure of the relative support for the hypotheses provided
solely by the data. In many practical applications however B will be relatively insensitive
to reasonable choices of the g;’s (as in Example 1 (Continued) in page 16) and then such an
interpretation is reasonable.

A rule of thumb in using B is that, a B < 3 is not much of an evidence at all in favor of
Hy, while a B between 3 and 6 gives a moderate amount evidence about the truth of Hy and
B > 6 gives an overwhelming support that Hj is true. Usin this yardstick, coming back to
Example 1, B in favor the hypothesis 7 > 1 equals 83323 = 3.19, indicating that the
data renders a moderate amount of support to this hypothe51s

We close our discussion on hypotheses testing after mentioning how to handle a point

null hypothesis. Since a continuous posterior gives probability 0 to a single point, this point
merits some discussion. Suppose one is interested in testing H1 z ; zo In such situations
one first specifies the prior my for Hy and m; = 1 — 7y for H;. In the next step one specifies
a proper prior 7(6) for 8 # 6,. Note that since 6, is a single point, 7(0) might as well be
a proper density on ®. However since the prior on @ now has both discrete and continuous
components, some caution is required in deriving the posterior and eventually the Bayes
factor. The marginal density of Y is given by m(y) = moL(6o|y) + (1 — m)m1(y), where
mi(y) = Jo_, L(8|y)w(0) dB. Again note that the domain of integration for determining
m1(y) could have as well been whole of ®. Thus the posterior probability ag of Hy is given
by ag = mL(6g|y)/m(y) and «; is found as 1-cy. Then after a couple of steps of algebra it
can be shown that B = L(6y|y)/m1(y).

Example 1 (Continued): Suppose with the same observation, 3 choosing and 9 not choos-
Hy:7m=0.1

m#0.1
prior probabilities of Hy and H;. Next under H; let us again assign a flat prior for 7. That is

ing we wish to test the hypothesis that . Let my and m; denote the respective
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0.5+0.5 f,dr if0.1€ A

0.5 [,dm if0.1¢ A"
Then the marginal joint p.m.f. of the 12 0-1 valued Y at the observed y is given by m(y) =
700.130.9° + (1 =) fy m3(1 —7)° drm = 73.874 x 104+ (1 —m)3.4965 x 10~%. Therefore the
posterior probability of the null hypothesis Hy is given by og = m3.874 x 107*/(7(3.874 x
10™*+(1 —m()3.4965 x 10™*). For example under the natural choice of my = 0.5, oy = 0.5256,
that is now there is only slightly more chance of the null being true. However for testing
this hypothesis we shall depend on the Bayes factor, which does not depend on 7y (and that
is why we have been scrupulously avoiding a specific value of 7y such as 0.5) and is given by
3.874 x 107*/3.4965 x 10~*) = 1.11, which actually does not provide any strong evidence in
favor of neither of the two hypotheses. Even after observing the data both the hypotheses
still remain almost equally likely to be true. But note that using the two sided p-value,
which is twice the numbers reported in page 11, the frequentist would not have Rejected H
for either model. \V/

for A C [0, 1] the prior probability of 7 € A is given by w(A) = {

6.4 Predictive Inference

As has been mentioned a couple of times before, one major triumph of the Bayesian paradigm
is the way in which it coherently handles the problem of prediction. For one of the motivations
of the the predictive density formula we are going to present, given in equation (15) below,
consider a slightly different problem of inference about a parametric function ¢(8). Of course
given the posterior distribution 7(0|y) we shall derive 7(¢|y), the posterior of ¢(0) given
y and then base all our inference like estimation, hypothesis testing etc. regarding ¢(6) on
this m(¢|y). In particular if one is interested in estimating ¢ (@) against a squared error loss,
then the estimate will be given by its posterior mean. But note that one need not compute
7(¢|y) for this posterior mean, because the posterior mean of ¢(0) can be easily computed
from the already obtained posterior 7(0|y) of 8 as

Elo(6)|y] = [, #(0)n(6ly) db. (14)

Now suppose we have observed the data Y = y and have obtained the posterior 7(0|y).
Now we are to predict a new random variable Z whose distribution depends on the unknown
0 and might also depend of Y. Thus let the conditional density of Z given @ and Y = y be
denoted by ¢(z]0,y). If the distribution of Z does not depend on Y given 0, as in the case
of i.i.d. observations, y will not appear in the conditional density of Z, but in general there
is no harm in letting Z depend on Y as well. Now in the face of uncertainty regarding the
value of @ (which of course is capsuled in its posterior distribution 7(8|y)), if one views the
problem of obtaining this conditional density g(z|6,y) as a problem of point estimation of
the function ¢(z|0, y), point by point for each z, then for a fixed z, g(2|0,y) may be viewed
as parametric function ¢(0), a point estimator of which under squared error loss may be
obtained using (14) as

plely) = [, 9(:10.y)(6ly) db. (15)
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The density p(z|y) given in equation (15) is called the predictive density of Z given
Y = y. (15) can of course be viewed from another purely distributional angle. In order to
obtain the conditional density of Z given Y = y, we first note that apart from the innate
dependence of Z on Y, if at all there is one, Z essentially depends on 6, which in turn
depends on Y. Thus the conditional density of Z given Y = y can be obtained by looking
at the joint density of Z and 0, conditional on Y = y, and then integrating @ out. The joint
density of Z and 0, conditional on Y = y is same as the product of the conditional density
of Z given 0 and Y, and the conditional density of @ given Y'; which given Y = y, is same
as ¢(z|0,y)m(0]y). This is another argument for the predictive density in (15).

Example 6 (Continued): Suppose Y71,Y,,...,Y,, ii.d. N(u,0?) with known o2 and based
on this data we are interested in predicting the behavior of a future observation Y,,.;. As
mentioned in footnote 11 in page 20, given Y = y the posterior of p is N (g, 0?/n) i.e. m(uly)

= 5 €XP {—%(u — y)2} Now the conditional density of Y,,.; given p and Y does not

271'(7

depend on Y and is given by f(yni1|p) = ﬁexp {—%(ynﬂ — ,u)Q}. Thus using (15),
the predictive density of Y, 1 given Y is given by

P(Ynt1|y)

= 2\7{52 B Xp{ 21 [(n+1),u _2(yn+1+ny)u+(yn+1+ny )]} du

Voo Lt (U 05 Ynn 0T+ 20 |
2no? 202 n+1 (n+1)2

Lo 222 )
- 2%02\/7 { 202n+1) (y"“_g)Z}

\/27m2(1 PP { m (bt = g)Q}

implying that Y, ,1|Y ~ N(y, (1+ %) 02) xzl. Thus for instance a 100(1-a)% highest
predictive density credible interval for Y,,.;, after observing the data ¥ = y is given by

y:i:zl,a/gawl—f—%. \Y

Example 2 (Continued): This is the first time we are getting back to this simple linear
regression example since its introduction in page 3. That is suppose we have observations
{(Xl = 331,1/1 = yl), (X2 = .732,}/2 = yg),...,(Xn = Z‘n,Yn = yn)}, denoted by data d, on
monthly sales Y and advertising expenses X for n months, where Y |X ~ N(8; + 5.X, 0?).
Now based on this data and the assumed model we are to predict the sales Y} for some
month when the advertising expense has been x;,. For simplicity assume that o2 is known
and put a flat non-informative prior on (8, 51) given by

7(Bo, B1) x 1 for — oo < By < 0o and — 0o < 1 < 00
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Now the likelihood function for (8, 81) is given by

L(fo, 1|d) o< exp {—%‘2 (nﬁé + 87>z — 2nBoy + 28:1(Bo — 1) szy'L) } :
im1 im1

In the regression set-up since the z;’s are considered to be given constants, statistics are the
ones which are functions of the y;’s. Thus from the above likelihood function it may be seen
that (v, X7, =;y;) are sufficient statistics. Since (7, X1 z;y;) <— ([30, ﬁl) is a one to one
function where 3 = Sy, /Sze (where Spy = S, (z;—T) (i —7) and Sz = X", (z;—7)?) and
Bo = §— 1T are maximum likelihood (least squares) estimates of (fy, 51), (,30, ﬁl) is sufficient
for (By, f1). Thus by (A5), posterior of (fy, 81) is proportional to the sampling distribution of
A A : Bo Bo o2 % Z?—l %2 -z
. A ~ _ h fl
(ﬁo, ﬂl) Since ( 8, N, 8 |5 = 1 and we have assumed a flat
prior on (B, 51), its posterior is obtained by just reversing the role of (g, 41) and (Bo, Bl)

3 lywm 42 %
i.e. it then follows that the posterior of ( bo ) is Ny (( @0 ) o [ n ZZ:_I Ti o ])

b By )7 Sem —T 1

Now we are ready to handle the predictive distribution problem. As the predictive density
of Y}, we want the conditional density of Y},|d. (Since the z’s are given constants and o2 is
assumed to be known, we simplify the notation by suppressing them in the given quantities.)
In order to get this conditional density, note that the conditional density of Y}|(5o, 51, d) is
Normal with mean 3y + 81z, and variance o2, while the conditional density of (g, 31)|d is
bivariate Normal. Therefore the (marginal) conditional density of Y}, |d must also be Normal,
according to the multivariate Normal distribution theory. Thus in order to get this Normal
distribution all we need to do is figure out the (marginal) conditional mean E [Y},|d] and the
(marginal) conditional variance V' [Y},|d] of Y} |d.

E[Y3|d] = E[E [Y3|Bo, B, d]] = E [Bo + Brzs|d] = o + Biz,

and
V [Yald] = E[V [YilBo, b1, d]] + V [E [Yi|Bo, 1, d]] = E [0*|d] + V [Bo + Brznld]
2 1 n
= 0'2 +V [ﬁ0|d] + xiV [51|d] + Q.ThCO’U (,60,51|d) = SJ— [Smm + ﬁ ZLCZQ + .Ti — 2$hf‘|
zx i—1
2 n _ )2
— gm [Sm + % {; 22— nﬁ} + (zp — 3)2] — o2 [1 + % + (a:hsmx) ]
Thus the predictive density of Y,|d ~ N (Bo + Bizp, 02 [1 +1i+ %D \V/

7 Prior Distribution

Now we have come to the final section of these notes. We will wrap these Bayesian notes
up after discussing the crucial issue of choosing the prior distribution for a given inference
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problem. Even among the Bayesians there are at least two schools of believers. The first
school, called the subjective Bayesians strongly advocate that a prior should only reflect one’s
subjective belief about the uncertainty in @ and thus the prior must be a proper distribution
on O. In deriving this prior one uses the laws of subjective probability. The laws of subjective
probability are basically same as the ones one is usually familiar with, however they are
derived from scratch from subjective considerations. These laws of subjective probability
have been derived in Appendix B of these notes. One can then subjectively specify the
prior by drawing either a histogram or a c.d.f.. Then one can proceed towards the posterior
computation using these raw priors using numerical methods. We shall take up the issue
of numerical computation of posterior using MCMC separately. A second more popular
approach is to subjectively specify the prior quantiles or moments and then match these
quantities with those of a standard distribution. These standard distributions which are
used as priors for a given model, are chosen in such a manner that the posterior becomes
analytically tractable. Such priors, when they exist for a given probability model, are called
conjugate priors. We shall discuss these conjugate priors in detail for the standard probability
models in §7.1.

The second school of Bayesians called the objective Bayesians insist on providing an objec-
tive analysis even for the cases where a lot of subjective prior information is available, as a
supplementary analysis, if not for anything else, at least for the purpose of comparison of how
much the analysis got distorted because of one’s subjective inputs. Such objective Bayesian
analyzes are performed using non-informative priors. Still now there is no clear-cut auto-
matic method of determining an appropriate non-informative prior for a given situation,
although some guidelines may be provided in choosing them in certain cases. Some such
methods and results are discussed in §7.2.

7.1 Conjugate Priors

As mentioned above, conjugate priors are those which yield analytically tractable posterior
distributions. Loosely speaking, a conjugate prior 7(0) for a likelihood L(8|y) is such that
both the posterior 7(6|y) and the prior 7(8) belong to the same family of distributions. The
form of a conjugate prior is usually determined after studying the likelihood function. A few
examples will help clarify the concept.

Example 1 (Continued): For the case of Y3,Ys,...,Y, ii.d. Bernoulli(7) which has the
pm.f. p(y|lr) = 7¥(1 — 7)Y for y = 0,1 the likelihood function L(n|y) = 7*(1 — 7)"*
where T(Y') = Y7 ,Y; is the sufficient statistic, and ¢ is its observed value. A simple
look at this likelihood is enough to come up with the conjugate prior for 7, which is given
by a Beta distribution Beta(c, 3) with «, 8 > 0 having p.d.f. FF(&O;JF’EB/B)) 7271 (1 — 7)1 for
0 <7 < 1. Using (8) (or (Ab) it is then clear that the posterior of 7 under this S-prior is
Beta(a+t, 8 +n—t), falling in the same family. Thus Beta distribution is a conjugate prior

for the problem of unknown proportion 7. v

Example 6 (Continued): For Y,Y;,...,Y, iid. N(u,o?) the likelihood function of
(u,T), where 7 = 1/0? is the precision parameter, is given in (9) in page 19. This likelihood
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reveals that conditional on 7 if one puts a N(6,1/(x7)) on p and then puts a Gamma(a, A)
prior on 7 then these can be absorbed in the r.h.s of (9) with the posterior having the same
prior form. That is let
)\awl/Q ) 1
- = 2 e exp [ oA+ v (u—0)7]} 16
m(p, 7) = m(p|7)m (T T ex T
(1,7) = m{uir)m(r) = o P{—57 [2A+ 4 (1~ 0)] (16)

The prior given in (16) is called the Normal-Gamma prior. Now by (9) and (8) the posterior
of (u,7) under this Normal Gamma prior is given by

(2/\ + ysi_l) + (n+ ) (u _ W) ] } (17)

1
v/2+a - g T Yy
w(p, Tly) o< T exp{ 27’ m——y

ny+y0 1
nt+y 7 (nt+y)T

of 7 is Gamma(a +n/2,\+ 1/5%71/2) and thus the posterior is also of the Normal-Gamma

which reveals that given 7 the posterior of mu is N ( ) and the marginal posterior

form. Thus the Normal-Gamma prior given in (16) is a conjugate prior for (u, 7).

A couple of remarks regarding the posterior with this informative prior is in order. First
note that for known or given 7 (and thus o?) the mean of the Normal posterior of u is a
weighted average of the sample mean and the prior mean, where the weight of the sample
mean is the sample size n and that of the prior mean is prior precision divided by the model
precision. This intuitively looks very appealing. For priors with larger uncertainties about
the value of y will have smaller prior precision, where the degree of smallness is judged
against the backdrop of model precision in terms of #. In such situations the location of the
posterior of p is going to be largely determined by the sample mean. On the other hand
with sharp prior information about y expressed in terms large prior precision, the location of
the posterior of y is going to be largely dictated by its prior value f. The posterior variance
of p is also very nicely interpretable. It is same as the harmonic total (we got into this
harmonic business, because we are working in the transformed reciprocal scale in terms of
precision) of the sample variance of the sample mean and prior variance of mu. Thus the
posterior precision increases if either the sample size or the prior precision increases. Similar
interpretations can be made with the posterior of u after integrating out 7, which will again
be a t distribution but with possibly a non-integer degree of freedom and location and scale
parameters a judicious mixture of the prior information and the information carried by the
data. \V/

Example 10: Let Y7, Y5,...,Y, be iid. Poisson(\). Then its likelihood function is pro-
portional to Ale™™, where ¢t = > i=1]» ¥i which immediately reveals that a conjugate prior
for A can be obtained using a Gamma prior. Thus if 7(\) oc A* e % then the posterior
of A is Gamma(a +t, § + n). The point estimate of A under squared error loss will then be

g{;, which again has the same nice interpretation as in the above example. \V/

7.2 Non-Informative Priors

As mentioned above such priors are not very easy to specify for an arbitrary problem.
However satisfactory solutions can be given for some special cases, leading to an approximate
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general solution for regular models. However here we shall confine ourselves to the case of a
scalar parameter ), because the solution for the multi-parameter case, though more or less
well-understood is way beyond the scope of these notes.

7.2.1 Location Parameters

Let f(y|f), the p.d.f. of observable Y be of the form f(y —#). Such families of distributions
are said to belong to location families of distributions, and # is called a location parameter.
Now suppose instead of observing Y one observes X =Y + ¢ for some constant ¢. Then the
p.d.f. of X is same as f(z —n) where n = 6 + ¢. One way of interpreting X is that it is
same as observing the original Y except now in a different unit of measurement, like say for
example Centigrade and Kelvin. Since both the problems (Y, 6) and (X, 7) are of identical
structure, m,(A) = mp(A) VA C ©, where 7,(A) denotes the prior probability of the set A
given by the prior of parameter ¢. Now 7,(A) = mp(A — ¢), where A—c={a—c:a € O}.
Thus 7p(A) = mp(A — ¢) implying

LﬁW)M:?A%”w)w:iAWw_Cﬁw

where 7(#) is prior p.d.f. of §. Note that, the above equality must hold YA. Now that can
happen if and only if 7(f) = 7(6 — ¢). Now since c is arbitrary, setting it equal to € yields
7(0) = 7(0), a constant.

Example 6 (Continued): If Y ~ N(u, 0?), with known o2, then the distribution of V" falls
in a location family. Thus a reasonable (location invariant, to be precise) non-informative
prior for y is given by 7(u) o 1 for —oo < p < 0. v

7.2.2 Scale Parameters

Let f(y|@), the p.d.f. of observable Y be of the form (1/0) f(y/#). Such families of distribu-
tions are said to belong to scale families of distributions, and 6 is called a scale parameter.
Now suppose instead of observing Y one observes X = cY for some constant c. Then a
simple change of variable yields the p.d.f. of X as (1/n)f(z/n) where n = cf. One way of
interpreting X is that it is same as observing the original Y except now in a different unit
of measurement, like say for example foot and meter. Since both the problems (Y,#) and
(X, n) are of identical structure, m,(A) = my(A) VA C O, where 71,(A) denotes the prior
probability of the set A given by the prior of parameter ¢. Now m,(A) = mp(c*A), where
c'A={c'a:a€ O}. Thus my(A) = my(c"'A) implying

Aﬂ@&zlﬂﬂ@%zéﬂf@fﬁ&

where 7(#) is prior p.d.f. of §. Note that, the above equality must hold VA. Now that can
happen if and only if 7() = c~'m(c™'0). Now since c is arbitrary, setting it equal to 6 yields
m(f) = 0~'m(1). Since m(1) is a constant this argument gives a non-informative prior for a
scale parameter 6 as m(f) o< 1/6.
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Example 6 (Continued): If Y ~ N(u, 0?), with known p, then the distribution of ¥ —
falls in a scale family. Thus a reasonable (scale invariant, to be precise) non-informative
prior for u is given by 7(u) o 1 for —oo < p < 0. \V4

Example 11: Let Y ~exp()\), the exponential distribution with failure rate A. For this YV’
its p.d.f. is given by Ae " = (1/6) f(y/0), where # = 1/ and f(z) = e *. Thus this belongs
to a scale family, and thus a non-informative prior for € is given by () o 1/6, which after
change of variable yields the prior for A as m(\) oc 1/A. \V/

7.2.3 Data Translated Likelihood

Since the time of Bayes and Laplace, since intuitively uniform prior appears to be a natural
choice as a non-informative prior, it is worth examining the situations where such uniform
prior might be appropriate as a non-informative prior. Let the likelihood function, written as
a function of ¢(6), where 6 is the original parameter of interest, be such that it is completely
known apriori except for its location, which depends on the data yet to be observed.

For example consider the likelihood function of y for the Normal model given in (9) for
known 0?2 = 7 = 1, n = 1 and yet to observe data Y = y. The likelihood function is
o exp {—(1/2)(n — y)?} and is exactly known how it will look (as a function of 1) before
observing the data, except its location. This situation is depicted in Figure 5 below, where

we have plotted the likelihood function for 3 values of y, namely 3, 10 and 17.
Figure 5: Likelihood Function of p
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(p-y)?

00 02 04 06 08 10

4

e 2

0 5 10 15 20

I
All the three likelihood functions are identical except their location, which of course depends

on the value of y. When we have a situation of this type, where the only effect the data has
got is to translate the likelihood, written as a function of ¢(#), to a proper location, then
such a likelihood is called data translated w.r.t. ¢(#). In the above example the likelihood
is data translated w.r.t the original parameter .

Now again consider the likelihood function (9), this time for known p = 0 and n = 1. The
likelihood function, as function of 7 is oc 7/2 exp {—(1/2)7y?}. This likelihood function, as
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function of 7, has been plotted for 3 values of y, namely 0.8, 1 and 2 in Figure 6 below.

Figure 6: Likelihood Function of 1
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This time of course the likelihood is not data translated w.r.t. 7 as its shape is not known
apriori before observing the data.

Now re-consider this case again, but this time consider the likelihood function as function

of ¢ = log7. L(dly) x exp{(1/2) (¢ +2logy) — (1/2)exp (¢ + 2logy)}. L(¢) has been
plotted in Figure 7 below for the same 3 values of y viz. 0.8, 1 and 2.

Figure 7: Likelihood Function of ¢= log(1)
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Now it is clear from the above plot, as well as algebraically from the expression of L(¢|y),
that this likelihood is data translated w.r.t. ¢.

When the likelihood is data translated w.r.t. ¢(6), that means the exact shape of the
likelihood is known apriori even before the data is observed, and the only role the data
plays is translate the likelihood to an appropriate place and thus pin-pointing its location.
In such a situation to say we know a little aprior: relative to what the data is going to tell
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us, may be expressed by saying that we are almost equally willing to accept one value of
7(f) as another. This state of indifference may be expressed by imposing a uniform prior
on ¢(#), so that a non-informative prior for  is given by 7(8) x ¢'(f). Thus for the last
example since it was found that the likelihood is data translated w.r.t. ¢=log 7, we should
put a uniform prior on ¢. Thus by change of variable, a non-informative prior for 7 should
be o 1/7, which agrees with the prior we have already obtained in 7.2.2. In general it is
fairly hard to come up with a ¢(-) such that the likelihood, as a function of ¢, is going to be
exactly data translated. However for regular models it is possible to find such a ¢ such that
the likelihood is at least approximately data translated, so that a non-informative prior for
f may be found. This method is discussed in the next sub-section.

7.2.4 Jeffreys’ Prior

Consider the likelihood function L(f|y) = I, f(y:|f) for a regular'® model. Let £(0) =
log L(A|y) and # denote the Maximum Likelihood Estimator (MLE) of 6. Since it is well

known that 6 —— 0, ignoring terms of third order or more in the Taylor series expansion of
£(0) about 6 one can write,

L(fly) = exp {£()} ~ exp {£(8) — (1/2)n(6 — 0)*J (y, §) } ~oc exp {—(1/2)n(0 — 6)*1(6) }
(18)

where J(y,0) = —14.4(9) and I(0) = E, [—%log f(Y\H)] 15 with J(y, ) and I(d) being

the values of J(y,f) and I(f) respectively evaluated at § = 0. A couple of explanations
are required for understanding the above string of equations in (18). First of all the second
term (6 — 6) d%f(ﬁ)|0_é in the Taylor series expansion of £(f) about € is missing because by

~

virtue of 4 being the MLE, this derivative is 0. The o reflects dropping of /@ in the final
expression. And finally, since J(y,0) = — 3" @ Jog f (y;|0), by the law of large numbers,

n 2vi=1 - qg?
J(y,0) = 1(8).

Above arguments justify approximating a regular likelihood by a Normal p.d.f. with mean 0
and standard deviation n~1/2I-1/2(f). Obviously this likelihood is not data translated w.r.t.
f, because both the mean and standard deviation of the approximating Normal density
depend on the data through 0. And with the approximations over, we are now in search of

MFormally a model is called regular if it satisfies the regularity conditions required for satisfying the
Cramer-Rao lower bound. These regularity conditions ensure that derivatives of f(y|f) w.r.t. 8 exist at
least up to the second order and one can freely interchange these derivatives w.r.t.0 and integrals w.r.t. y
whenever required.

15The quantity I(6) is called Fisher Information of a model and plays a very critical role in frequentist
statistics. Intuitively, I(#) gives the negative of the expected curvature of the log-likelihood for a single
observation. It can be shown that under the regularity conditions that I(d) > 0 V8 € ©. Thus the negative
sign only ensures that we are dealing with a positive quantity that is to be called “Information”. A large value
of 1() indicates that the likelihood function is sharply pointed. In which case the model is very informative
about 4. On the other hand if the likelihood is flat, then the model carries very little information about 6,
and in this case the value of I(6) will be very close to 0.
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a ¢(0) for which it will be. Let 6 <—> ¢(#). Then

= By |- los (V1)

d d df
- = s a0 g |
d? do df d
s ) () o

dé do
df d?
- () ] 1ogf(Yw>]

The last equality follows because Ej [ log f(Y\Q)] o 2 f(y|0) dy = & [, f(y]0) dy =

4. = 0. Also note that in the above we have freely sw1tched from ¢ to 0 in f(Y|¢) to f(Y6)
or Ey[-] from Ey|-], because when viewed as an argument of a function as in these, it does
not matter which one one writes as ¢ <> 6 is 1-1. Thus we get the result that

= —E,

1(6) = 1(6) (%) 19)

Now if one chooses a ¢(6) such that ‘%‘ oc I7Y2(6) or ‘%‘ oc I'V2(0) or ¢(0) = [ I/2(0) db,
then by (19), I(¢) becomes a constant free of ¢. Then in terms of the transformed parameter
#(0), by (18), L(¢|y), the likelihood as a function of ¢, is approximately o exp {—(c/2)n(q5 - (]3)2},
where ¢ is the MLE of ¢. Now since this approximate likelihood of ¢, exp {—(c/?)n(qﬁ — q;)?}
is completely known apriori before observing the data, except its exact location, which is
determined by dA), it is data translated w.r.t. ¢. Hence following the arguments provided in
7.2.3, a uniform prior appears to be a reasonable choice as a non-informative prior for ¢ i.e.

a non-informative prior for ¢ is given by m(¢) oc 1. Now since ¢ is such that ‘d¢‘ o I'2(9)
a simple change of variable yields a non-informative for 6 as

77(60) oc IY2(9) (20)

The original argument of Jeffreys which led him to the prior in (20) was a little differ-
ent, which is as follows. An issue that plagues the problem of choosing a reasonable non-
informative prior is that of reparameterization. That is if one imposes a prior 7s(6) on
and if 6 <=5 ¢ then by the change of variable formula, the assumed prior for ¢ induced by
mp(0) is given by m4(¢) = m(0) f%‘. Thus if some principle of choice led one to my(#) as a
non-informative prior for #, then the same principle applied to ¢ should now yield a my(¢)
satisfying 74 (¢) = mp(6) ‘%‘. Otherwise the principle is inconsistent. For the Jeffreys’ prior

in (20), m4(@) ox I*/2(¢), which by (19) equals, I'/2(6) ‘ ‘ o g ‘ ‘ A prior enjoying this
property is called invariant under parameter transformatlon Wthh is a minimal requirement
for any non-informative prior to be qualified to be called “reasonable”.
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A uniform prior, as a principle of choice for instance, does not have such a property. m(f)
x 1 = 7m(¢) x ¢7/2 for ¢ = 62, or 7(¢) x e? for ¢ = logh, or 7(¢) xx 1/¢? ¢ = 1/,
none of which is again uniform. But if 6 is such that I'/2(f) oc 1, then in terms of any
reparameterization like ¢ = 62 or ¢ = logf or ¢ = 1/0, the corresponding Jeffreys’ prior for
these transformed parameters will respectively be proportional to ¢~'/2, e? or 1/¢2.

Example 1 (Continued): Here p(y|m) = 7¥(1 — 7)' %Y. Thus logp(y|7) = ylogm + (1 —
y) log(1 — 7). Hence %logp(Yh) =4 (% + %) =— [W—Y; + %] = T2tV There.

m2(1—m)?

fore since E, [Y] =, I(7) = E; [—% logp(th)] = =M — 7=1(1—7)~L. Thus by (20),

w2(1-m)2 —
Jeffreys’ prior for 7 is given by 7;(7) o« 7=/2(1 — 7)~%/2, 0 < 7 < 1. Note that () is
improper. In order to see why this is a reasonable non-informative prior, let us consider
the likelihood function L(r|y) = 7'(1 — m)"~*, where ¢t = ", y;. Standardized L(rw|y), as
function of 7 for n = 24 is plotted for ¢ = 2, 12 and 22 in Figure 8 below.

Figure 8: Likelihood Function of 1t
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Obviously the likelihood is not data translated w.f't. 7. The three different likelihoods have
three different shapes. The likelihoods for ¢ = 2 is positively skewed, for ¢ = 12 is symmetric
while for ¢ = 22 is negatively skewed.

In the derivation of Jeffreys’ prior it was seen that the parameter w.r.t. which the likelihood
is approximately data translated is given by ¢ = [ I" 2(9) df. Thus in this case consider
the transformed parameter ¢ = [7~/2(1 — 7)~Y/2 dr o sin~'y/7. Writing the likelihood
function in terms of ¢ we get L(¢|y) = sin® ¢ cos> ™ ¢ for ¢ € [0,7/2]. Now the three
standardized likelihoods in terms of ¢ is plotted for ¢ = 2, 12 and 22 in Figure 9 below.

Figure 9: Likelihood Function of ¢
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The likelihoods in Figure 9 appear to be data translated and thus a uniform prior for sin™!y/7
deem to be quite appropriate. This uniform prior on sin~!y/7 implies that the Jeffreys’ prior
my(m) oc 7721 — 7)"2 on 7. \V/
Example 10 (Continued): If Y ~Poisson(\), logp(y|\) = ¢+ ylog A- A\. Hence % logp(Y|A)
= 4 (Y/XA—1) = —Y/X% Therefore since E) [Y] = A, I(A) = E, [—%logp(Y\)\)] = AL
Thus by (20), Jeffreys’ prior for \ is given by 77(\) oc A™1/2, X > 0. Note that again 7;())

is improper. The likelihood, as a function of ) is plotted in Figure 10 below for n = 1 and
y=1,4and9.

Figure 10: Likelihood Function of A
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As expected the likelihood is not data translated w.r.t. A. But now when the likelihood as
a function of ¢ = [ I'/2(\) d\ = [ A2 dX\ o< VX, written as L(¢|ly) x ¢¥e* is plotted
for the same 3 values of y as in Figure 11 below:

Figure 11: Likelihood Function of ¢
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it suddenly appears to be data translated. Thus a uniform prior on v\ appears to be
reasonable, leading to the Jeffreys’ prior m;(\) o A2 on A\ \V4

Thus in an essence Jeffreys’ prior catches hold of a parametric function ¢(f) w.r.t. which
the likelihood becomes approximately data translated and thus imposes a uniform prior on ¢
which in turn induces a prior on #. This whole process is automatically contained in formula
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(20), and for every problem one need not explicitly work out the nature of ¢ for which the
uniform prior is a good choice. The derivations of ¢ such as sin_lﬁ and v\ in the above
examples are only for illustrative purpose.

For the multi-parameter case, 8,4, = (01,02, ...,0,)". In this case the Fisher information
is not a scalar but a p X p matrix I(0) = ((;;(@))),,,, called the Fisher Information Matrix,

with 1;;(0) = Eg [—#;% logf(Y|0)]. For the multi-parameter case Jeffreys’ prior is given
by

m(8) o< |1(6)['* (21)

While for the single parameter case, Jeffreys’ prior is well-accepted as a reasonable non-
informative prior, it is not so for the case of presence of nuisance parameters. However
discussions for this case is well beyond the scope of these notes and we shall finish our
discussion by showing an illustration of computation of Jeffreys’ prior in the multi-parameter
case.

Example 6 (Continued): For Y ~ N(y,0?), log f(Y|u,0%) = ¢ —logo — 55 (Y — p)*.
Thus a% log f(Y|p,0%) = (Y — p)/o? and 2 log f(Y|u,0?) = —=1/o + (Y — p)?/0>, so that
23log f(Y|u,0%) = —1/0?, 525 log f(Y|n, 0%) = 525 log f(Y|p,0?) = —=2(Y — p)/0® and
60722 log f(Y|p,0%) = 1/0* = 3(Y — p)?/o*. Thus since E, ,[Y —p] = 0 and E, , [(Y — p)?]

= 0'2’

I, 0) = l 1/002 2/002 ]

Thus the Jeffreys’ prior in this case is given by 7 (g, o) o |I(mu, 0)|** « 1/02. Note that it
is slightly different from the standard non-informative prior for this case given in (7). The
prior in (7) can be obtained by assuming that p and o are independent apriori and then
multiplying their respective non-informative priors obtained in §7.2.1 and §7.2.2. This just
goes on to show the problems associated with Jeffreys’ prior in the multi-parameter case.sy

Appendix A: Sufficient Statistics

Definition Al: A (possibly vector valued) statistic T'(Y;,Ys,...,Y,) is said to be suffi-
cient for @ if the conditional distribution of the original observations Y;,Ys, ... Y, given
T(Y1,Y,,...,Y,) =t does not depend on 6.

Sufficiency plays a central role in mathematical statistics. Intuitively, sufficient statistics
provide a way of reducing the data without loosing any information about the unknown
parameter @. This is because if one has the value of the sufficient statistic T' but the
original data set Y1,Y5,..., Y, is lost, one can still reconstruct a set of Y7,Ys,...,Y, (using
for example a random number generator) as it does not require knowledge of the unknown
0 (by definition), which is equivalent to the original data set in the sense that its probability
distribution remains the same as the original data set. Thus if sufficient statistics exist, one
need not carry around the entire original raw data set for drawing inference about the model
parameters. Just having the values of the sufficient statistics is good enough or sufficient,
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as these statistics carry all the relevant information about @ contained in the observations
Yi,Ys,....Y, .

Example A1l: Suppose Y; and Y; are i.i.d. Poisson()\) i.e. we have a sample of size 2 from
a Poisson population. Consider the statistic T = Y; 4+ Y5.

P(Yy=y|T =t)
PYi=yYo=t—y)
P(T=1)
PV =y)P(Ya=1t—y)
e~ (2M)t/t!
(because Y; and Y; are independent and 7' ~ Poisson(2)))
e PN/ (yl(t — y)!)
e 22 (2))t/t!

- ()G

which does not depend on the unknown population parameter A. It should now be easy

to see that if we had Y3,Ys,...,Y, a sample of size n from a Poisson()\) population and
T=Yi+Y,+---Y,,
¢l 1N /1\% /1%
P(}/l:ylan:yQa"'aYn:yn|T:t):7<_> (_> ...<_> ,
yilya!l ooy \n n n

which does not depend on A. Thus according to the definition 7" = 27 Y, is a suf-
ficient statistic for a Poisson sample. This is because if one has the value of T as t,
one can reconstruct a version of the original sample by generating a set of values from a
Multinomial(t; %, ceny %) distribution, without bothering to carry around all the n Y}, Y5, ..., Y,
values. \V/

Now trying to intuitively guess, obtain and then show a statistic is sufficient from definition,
as has been done in example A1 above, is an arduous if not an impossible task. Fortunately
there is a theorem, called the Factorization Theorem, which helps one obtain a sufficient
statistics in a routine manner from the expression of the p.m.f./p.d.f. of a probability model.
Before presenting the Factorization Theorem theorem let us have a re-look at the definition
of the likelihood function. Though the concept of likelihood function has already been
introduced in the paragraph preceding equation (8) in page 18 of the text, a formal definition
and its interpretation are as follows.

Definition A2: If V7,Y5,...,Y, are i.i.d. with p.d.f. f(y|0) (or p.m.f. p(y|@)) with re-
alized values Y7 = y;,Ys = 49,...,Y, = y, the likelihood function of 8 is given by
L(Oly1,yay - yn ) = I11—; f(yil€) (or ITi—, p(y;|6) in the discrete case).

Very loosely speaking the likelihood function sort of gives the probability of observing the
data at hand given a value of the model parameter 8. But since @ is unknown, we try to
view this quantity in its totality as a function of the unknown 0 as it varies over its domain
©. It is important to realize that in the expression of the likelihood function, the variable of
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interest is @ and not the observed data Y; =y, Yo = 4o, ..., Y, = y,. It is something akin to
a probability only when viewed as a function of ¥, ¥s, ..., y,, but since the likelihood must
be viewed as a function of 0 it is not a probability.

Example A2: A. If V,Y5,...,Y, are i.i.d. N(u,o0?), with realized values Y; = y;,Y, =
Yo, - - -, Yn = Yn, then the likelihood function of (u, 0?) is given by

L(ps 0”1, - ) = (2m0%) V7 207 Rins 0 = (o) /2 e (L 9
(A1)

B. If Y1,Y5,...,Y, are i.i.d. Bernoulli(7), so that each Y; is 0-1 valued with probability of
assuming the value 1 is 7 and 0 is 1 — 7, which may be expressed as the p.m.f. p(y|7) =
7¥(1 — m)'7¥ for y = 0,1, with realized values Y; = v;,Y2 = #s,...,Y, = ¥,, then the
likelihood function of 7 is given by

L(T|y1, Y, - - Yn ) = w2zt Yi(1 = )"~ Lica U (A2)

C.If V1,Y,,...,Y, are i.i.d. Poisson(A) with realized values Y} = y1, Yo = y2,..., Yy = yn,
then the likelihood function of A is given by

LY, Y2, - > Yn ) = e ™ AZi= ¥/ T wi! (A3)

=1

(Factorization Theorem): If the population random variable Y has p.d.f. f(y|@) (or
p.m.f. p(y|@)) then given the the observed data Y7 = y;,Ys = vo,..., Y, = y,, statistics
T(Y1,Y,,...,Y, ) is sufficient for € if and only if the likelihood function can be factored as
(t being the realized value of T')

L(0|y17y2a <y Yn ) = g(t(ylvyZa <y Yn )70)h(ylay2a <y Yn ) (A4)

That is ¢(y1, Yo, - - -, yn ) is sufficient for @ <= the likelihood function can be factored into
two components, where the expression of the first component involves @ and terms involv-
ing y1, Yo, . - ., Yo appearing only through ¢(y,ys, ..., ¥y, ), and the expression of the second
component involves only vy, ys, - . ., ¥, Without any term involving 6.

Proof: We shall present the proof for discrete Y, which is a little more intuitive and illus-
trative but less technical than the continuous case.

“only if” or = part: Suppose T'(Y1, Y, ..., Y, ) issufficient for @ and let ¢(y1,yo,...,Yn ) =
t denote the observed value of T'. Then

LOly1,y2, - Yn )

= PMi=y,Yo=1p,..., Y0 = ya[0)
(by definition of likelihood function)

= PWVi=y,Yo=1,.... Y =y, T =1]0)
(as the two events are same)

= P(T=t0)P(Y1=y,Yo=1s,...,Y, = yu|T =1,0)
(by definition of conditional probability.)

= g(t’ e)h’(ylanZa -9 Yn )
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where ¢(t,0) = P(T = t|@), which involves only @ and t (without directly involving
Y1, Y2, - - -, Yn - the only way yi,vs,...,y, appear in the expression of g(¢, ) is through t);
and h(y1, Y2, .- Y0 ) = P(Y1 = y1, Yo = ¥o,..., Y, = y,|T = ¢,0), which does not involve
0, by definition of the sufficiency of T'.
“if” or <= part: Suppose the probability model of Y7, Y5, ... Y, is such that it admits the
factorization (A4). Then
PMi=y,Yo=1,.... Ya=ul|T =t,0)
P(Yl :yla}/Q :y27"'7Yn :ynaT:t|0)
P(T = t|0)
g(t7 o)h(yla Y2,---,Yn )
E{yla Y2, Yn ZT(yla Yo, .-+ Yn ):t} g(t’ O)h(yl’ Y2,- -3 Yn )
g(t, o)h(yla Yo,-- -5 Yn )
IO Eryy ys . yn T W1, Yor - Yo 1=ty YL Y20 0 )
h’(ylﬂyQ) -5 Yn )
Zyla Y2, -- -3 Yn :T(yla Yo,---3Yn ):t h(y1;y2; o Yn )
which does not depend on 6. v

Example A2 (Continued): A. i. Consider the Normal likelihood given in (Al). Assume
that o2 is known but not pu. Let T'(Yy,Ys,...,Y, ) = Y, so that t = 7. Then the likeli-
hood function (A1) can be factorized into g(t, ) = e *=#°/C%*) and h(yi, y, ..., U0 ) =
(210?)"™/2e" 57 ia® 9’ showing that Y is sufficient for u in a N(u, 02) model for known

o2

A. ii. Again consider the Normal likelihood given in (A1). This time assume that p is known
but not o2. Let T'(Y1,Ya,...,Y, ) = X", (V; — n)% Note that this 7T is a statistic because p
is known. In this case define g(t,02) = (2r0?)™/?e~/**) and h(y:,y2,...,yn ) = 1 so that
L(o®|y1, Y2, -, Yn ) = g(t, 02 h(y1, Y2, - - -, Yn ). Thus in this case 37 (V; — p)? is sufficient
for 2.

A. iii. Finally consider the Normal likelihood in (A1) with both (u, 0?) unknown. Note that
in this case the unknown parameter is vector valued with @ = (u,?). In this case we should
have a vector valued sufficient statistics . Thus let T = (Y, ¥, (V; — Y)?), ¢(¢,0) =

(27r02)_"/Ze_zfr%{”@_“V’LZ?:l(yi_@Q} and h(y1,y2,---,Yn ) = 1, so that L(Olyi, yo,---,Yn ) =
g(t,0)h(y1,Y2, - -,Yn ). Thus in this case (Y, X", (V; — Y)?) is sufficient for 8 = (u, 0?).
B. For the Bernoulli likelihood in (A2) let T =30, V;, g(t,7) = n*(1—7)" " and A(y1,Y2, - - -, Yn ) =
1. Then L(7|y1,y2,-- -, Yn ) = g(t, m)h (Y1, Y2, .., yn ) and thus Y7, Y; is sufficient for 7.
C. Y, Y, is sufficient for A of the Poisson model, because for the Poisson model define T =
"L Y g(t,A) = e and A(y1, y2, - -5 Yn ) = 1/ 117, ys! so that the Poisson likelihood
in (A3) equals g(t, \)h(y1, Y2, -, Yn )- Y%
Now according to (A4), if T is sufficient for Y, since the likelihood L(0|y) = ¢(¢t, 0)h(y)
we can simplify (8) further by writing

m(0ly) o f(t|6)7(6) (A5)
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because as y is given, we need not keep track of the terms involving y, just as we had dropped
the denominators of (3), (4), (5) and (6) in order to arrive at (8). Also note that in (A5) we
have rewritten g¢(t,0) as f(t|@), where f(¢|0) is the p.m.f./p.d.f. or sampling distribution
of the sufficient statistics of T', which actually follows from the proof of the factorization
theorem.

Appendix B: Subjective Probability

Subjective probability of an event or a hypothesis A like “it will rain tomorrow” , “the value
of Stock X will sky-rocket in the long run ” | “the launch of this new product would be
successful” |, “I will get an S in Stats” , “we will get the movie ticket this afternoon” |, “we
will get a really good candidate to fill up the vacancy” , “the negotiation for the contract will
go in favor of my organization”, “managers with an engineering background tend to be more
quality conscious” etc. is an individual’s personal belief about the likelihood of the event
happening. Nothing stops an individual from having a subjective judgment about events
which are repeatable and thus too some extent verifiable by experimentation like “result of a
toss of this coin would be Head” , “the amount of rice in 1 Kg. packets of brand X is less than
a Kg.” , “the light-bulbs manufactured by company Y last more than 1000 hours” , “annual
profit of company Z lies somewhere between Rs.4 and 5 crores” etc. but the concept is more
useful (and possibly the only tool available for analysis) in situations described in the first
sentence, where there is no scope of repeatability of an experiment to verify one’s subjective
judgment directly, yet there is uncertainty in face of which decisions must be taken.

What we intend to do here is to provide a gentle non-rigorous i.e. non-axiomatic intro-
duction to the concept of subjective probability and derive the probability laws which guide
them from this basic understanding, without taking those probability laws to be granted as
a part and parcel i.e. definitions and theorems of the mathematical treatment of the subject.

To begin with, and for the rest of these notes, it is easiest to understand subjective proba-
bility in terms of betting schemes. Suppose you are to assign a number between say 0 and 1,
to your degree of personal belief about a possibly uncertain event A, with the understanding
that 0 corresponds to impossibility of the event and 1 to complete certainty. How does one
go about pinning down a number on the paper to express one’s subjective belief about an
uncertain event A? Consider a betting scheme in which you will gain Rs. 1 if the event
A happens, and nothing (Rs. 0) if A does not happen. Since you are not allowed to gain
anything for free (in case A happens that is) a certain amount say Rs.e would be charged
as an entry-fee allowing you to enter the bet. That is the game is for you to buy a lottery
ticket for Rs.e which would be worth Rs. 1 if A happens and becomes worthless if A does
not happen. The question is, how much are you willing to pay for entering this bet or buying
the lottery ticket? Depending upon your degree of (subjective) belief about the occurrence
of the uncertain event A, there must be a certain threshold price p, below which you would
reckon it to be profitable for you to enter the bet, and above which you are not prepared to
pay. That is in your mind you try to evaluate the “fair” price of this bet (in which you stand
to win Rs. 1 if A happens and 0 if it does not) in terms of its “expected” winning amount.
This threshold “fair” price p of the lottery-ticket (or in other words the entry-fee of the bet)
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is your subjective probability of occurrence of event A. That is p is your “expected” winning
amount, such that you buy the lottery ticket ( or enter the bet) if its price (entry-fee) e
is less than (or even equal to, in which case you are really indifferent about buying this
lottery-ticket) p, and do not enter the bet otherwise.

Though the above concept is fairly straight-forward, a few numerical example would help
illustrating the concept. Obviously e > 0 and nobody would buy the lottery-ticket if it is
priced above Rs. 1, the winning amount. So

0<p<l

(you will not enter the bet if you are absolutely certain that A would not happen no matter
however small e is - this corresponds to p = 0; and on the other hand as long as e < 1
you would consider buying the lottery ticket to be in your advantage if you are absolutely
certain of occurrence of A corresponding to p = 1). That is stronger your belief that “A
would occur” more would you be willingl to pay for the lottery-ticket. For example if you
believe that there is an 80% chance of occurrence of A then your “expected” winning amount
is Rs.0.80 (1 x 0.8 + 0x whatever), and you would enter the bet as long as you are paying
less than 80 paise as its entry-fee; if you believe that there is a 90% chance of occurrence
of A you should be willing to pay up to 90 paise to enter the bet. Similarly if you believe
that the chance of occurrence of A is only 0.25 you will not be prepared to pay more than
25 paise to enter the bet, or if you believe that the chance of occurrence of A is only 0.05
you will not enter the bet if the entry fee exceeds 5 paise.

So it can be summarized by saying that, subjective probability of an event A is what you
consider to be a “fair” entry-fee for a bet, in which you stand to win Rs. 1 if A happens and
nothing in case it does not. This fair price of the bet is mathematically same as how much
you “expect” to win, but since this “expected” winning amount is harder to elucidate, for
evaluating subjective probabilities always try to think of what you consider to be a “fair”
price of the lottery ticket.

Now that we have a basic understanding of subjective probability in terms of the “fair”
price of a bet, let’s delve on this concept a little bit more for understanding the basic “Dutch
Book Arguments'®” used to prove the probability laws in later part of these notes. Since
according to your judgment p is the “fair” price of the bet, now turning around the table,
you should be equally willing to enter the same bet with someone else, who now pays you
Rs. p as an entry-fee of a bet where you have to pay Rs. 1 if A happens and nothing if A
does not happen. In fact in a situation where your subjective probability of A happening is
p and where you have to pay Rs. 1 if A happens and nothing if A does not happen, it’s just
not “fairness” which dictates that you should accept Rs. p as the entry-fee, if you are asking
for more than Rs. p as entry-fee, in your own ,assessment you would be loosing opportunity
in making money. Let’s see why. In previous paragraphs we have seen that if your subjective
probability of A happening is p, then Rs. p is the maximum amount you were willing to pay
to enter that bet. Now when someone else is entering the same bet with you for an entry-fee,

16Tn British racing jargon a book is the set of bets a book-maker has accepted, and a book against someone
-a “Dutch book” -is one in which the book-maker stands to suffer a net loss no matter how the race turns
out.
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you would naturally not accept an entry-fee less than Rs. p, because you would “expect”
to loose in that case. However now if you fix an entry-fee of p’ > p, so that you would not
entertain any bet which I pays you an entry-fee of less than Rs. p/, then from someone who
is offering an entry-fee of say ’%”’ in your own assessment you would loose an opportunity

of an “expected” amount of Rs.’%p' — p > 0. That is what we just proved is:

Basic Lemma: If my subjective probability of A happening is p, then a bet in which I win
Rs.1 if A happens and nothing if it does not, for an entry fee of Rs.p (is “fair” by definition
of subjective probability, and) is equivalent to me to the reverse bet in which I accept an
entry fee of Rs.p and pay Rs.1 if A happens and nothing if it does not.

Now we are in a position to give the proofs or the basic probability laws. In the sequel we
will use the notation P(A) as the subjective probability of occurrence of event A.

Complementation Law: For any event A, P(A°) = 1 — P(A), where A® is the non-
occurrence of event A.

Proof: Let P(A) = p and P(A°) = p’ be my subjective probabilities of A and A€ respectively,
but suppose p # 1 —p'.

Casel: p<1—19p

Consider you entering the reverse bets for both A and A¢ with me for respective entry-fees
of Rs. p and p'. That is you enter into two bets with me. In the first you pay Rs. p as
an entry fee to me with the understanding that I will pay you Rs. 1 if A happens, and
nothing if it noes not (A€ happens). In the second you pay Rs. p’ as an entry fee to me with
the understanding that I will pay you Rs. 1 if A® happens, and nothing if it does not (A
happens). Since my subjective probabilities for A and A° respectively are p and p', by the
basic lemma, I should be willing to enter into both of these reverse bets with you. Now no
matter which one of the events happen, A or A€, you are guaranteed a winning amount of
exactly Rs.1 from me by paying me a total sum of p+ p', which is less than 1 by assumption
and thus holding a “Dutch Book” against me! So if I am assigning a subjective probability
of p to event A it would be irrational for me to assign a subjective probability of less than
1—p to A because then someone can hold a Dutch book against me compelling me to suffer
a sure loss.

Case2: p>1—19p
Show that in this case also you can hold a Dutch book against me, and thus it would again
be irrational for me to assign a subjective probability of more than 1 — p to A°. \V/

Thus what we have just shown is that if you assign a subjective probability of p to an
event A, then you do not have any choice but to assign a subjective probability of 1 — p to
A°. For otherwise it would be irrational and someone else can hold a Dutch book against
you, making sure that you loose money no matter what. Thus the first law of subjective
probability is the complementary law.

Addition Law: If A;andA, are two mutually exclusive events, that is they cannot occur
simultaneously or A; Ay = ¢, then P(A; U A2) = P(A;) + P(As).

Proof: Let A = A;UAy and P(A;) = p1, P(Ay) = p, and P(A) = p be my subjective
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probabilities of A;, Ay and A respectively, but suppose p; + py # p.

Case 1: p1+pa <p

Since I believe that P(A;) = p; and P(Ay) = py I should be willing to enter the reverse bets
on A; and A, with you. Or in other words, first you enter into two bets with me on A; and
Ay, in which you pay me Rs.p; and p, respectively as entry-fees, with the understanding that
for the first bet I would pay you Rs. 1 if A; happens (and nothing otherwise) and for the
second bet I would pay you Rs. 1 if A, happens (and nothing otherwise). At the same time
since I believe that P(A) = p, I should be willing to enter a forward bet with you on A in
which I pay you Rs. p as an entry-fee and win Rs, 1 from you if A happens and nothing if it
does not. Now since A = A;|JAy and A; N A, = ¢, if A happens exactly one of A; and Ay
must happen and vice-versa, and if A does not happen none of A; or A, can happen either
and vice-versa. So if A happens I pay you Rs, 1 for one and only one of the reverse bets on
A; and Ay, while you also pay me Rs. 1 for the forward bet on A, resulting in you gaining a
net amount of p — p; — po > 0 in entry-fees. Similarly if A does not happen both of us loose
all our bets (you two on A; and Ay and me the one on A) but you still retain your gain of
p—p1 — p2 > O in entry-fees. Thus if I hold that p; + ps < p, then you can hold a Dutch
book against me with the above betting scheme forcing me to incur a sure financial loss. So
to be rational I must not hold p; + ps < p.

Case 2: p1+p2>p
Show that in this case also you can hold a Dutch book against me, and thus it would again
be irrational for me to hold that p; + ps > p. \V4

Thus in assigning subjective probabilities to events one must have regard for the above
addition law along with the complementation law. To illustrate the point with an example,
suppose that a contract, which would be awarded to only one party, is being bid by you
and two other competitors A and B. If you assign (subjective) probabilities 0.4 and 0.3
respectively for A and B bagging the contract, then you must assign a probability of 0.7
to the event “your competitor bags the contract” as a consequence of the addition law and
subsequently a probability of 0.3 to the event “you bag the contract” as a result of the
complementation law. (You have to be a bit indifferent while thinking of the betting scheme
for eliciting the probability of the event “you bag the contract” because, even if you honestly
feel that you have 30% chance of bagging the contract you may not be willing to pay 30
paise as the entry fee to this bet which might compound your loss in case of loosing the bet
by loosing the contract as well!).

Now we will discuss the last law of subjective probability, namely the product law. Here
we are concerned with conditional probabilities where we express our uncertainty about an
event depending on the state of our information. Actually all probabilities are conditional
probabilities, because when we are appraising probabilities we are doing so at the given state
of our knowledge. If the state of knowledge remains unchanged from event to event we usually
suppress this explicit dependence for the sake of simplifying notation. But in general our
state of knowledge changes as we proceed with a problem and calls for additional notations
to distinguish between the two situations -one with and the other without the piece of
information.
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Let B denote an additional piece of information which is available to us for the problem
of eliciting probability of the event of interest A. We denote this probability by P(A|B)
to distinguish it from P(A) referring to the probability of event A when we do not have
information B. To clarify the concept let A denote the event that, “Boss will like my idea”
and B denote the event “Boss is in a terrible mood”. On a fine morning after a night-out on
your work-station you may have some appraisal for P(A) but this would probably change
into something different, call it P(A|B), once you have had a chat with the boss’s secretary
in the coffee room.

The only difficulty in expressing P(A|B) as a (subjectively) “fair” entry fee of a certain bet
lies in the fact that it essentially has to be left as an undefined quantity in case of P(B) = 0.
That it has to be left as an undefined quantity in this case is intuitively very clear though.
For in this case, you are asked to give your belief about the occurrence of certain event A
with the knowledge of all event B, which you consider to be impossible to happen!

To circumvent this difficulty in appraising P(A|B), think of the conditional bet, where you
consider Rs. P(A|B) to be a “fair” entry fee for a bet where you get Rs. 1 if A happens
and nothing if it does not, when you know that B has happened; and you do not entertain
any bet (on A) at all if B does not happen. This is same as the following bet which is
slightly more transparent. Consider a conditional bet in which you win Rs. 1 if both A and
B happens, nothing if A does not happen but B happens, and the bet is called off in case B
does not happen and you get your entry fee back. What would you consider to be a “fair”
entry fee for this bet? Since it is essentially same as the aforementioned conditional bet, the
“fair” entry-fee for this bet should also be Rs3. P(A|B). Now we are in a position to state
and prove the:

Multiplication Law: P(AN B) = P(A|B)P(B)

Proof: Consider two other bets apart from the ones introduced in the last paragraph. The
first bet is for elucidating the subjective probability of A B in which you gain Rs. 1 if both
A and B (or in other words AN B) happens and nothing otherwise for your “fair” entry-fee
of P(ANB). The second bet, though only involves the occurrence of event B, is a little
peculiar in terms of its pay-off not being a whole Rs. 1. In this bet you gain Rs. P(A|B) if
B does not happen and nothing otherwise for an entry fee of Rs. P(A|B)P(B¢) which is less
than the winning amount (provided of course P(B¢) < 1 - otherwise in your assessment B
is an impossible event with P(B) = 0 implying P(B¢) = 1 by the complementation law and
your sure winning amount of P(A|B) equals the entry fee which is only “fair”). Now it is all
easy exercise to check that the total winning amounts of these two new bets together equals
the winning amount of the conditional bet introduced in the last paragraph in all possible
combinations of occurrence and non-occurrence of the events A and B. This is demonstrated
in the following two tables:

Winning Amount of the Conditional Bet

A—

B Happens | Does Not
Happens 1 0
Does Not | P(A|B) | P(A|B)
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Sum of the Winning Amounts of the Two Bets
A—
B

Happens 1+0=0 0+0=0

Does Not | 0+ P(A|B) | 0+ P(A|B)

= P(A|B) | =P(A|B)

Happens Does Not

Now since the winning amount of the conditional bet is exactly same as the sum of the
winning amounts of the two bets, the entry fee of the conditional bet must equal the sum
of the entry-fees of these two bets. For if it is less, then one can offer a reverse bet on the
conditional bet with a smaller entry-fee and at the same time offer forward bets on the other
two gaining more in entry fee, retaining this excess gain no matter what happens to A and B
and thus holding a Dutch book against an individual who has the above as his/her subjective
probabilities. Similarly if it is more, one can offer a forward bet on the conditional bet and
reverse bets on the other two and thus again holding a Dutch book against such an irrational
individual. So these two must coincide, or in other words,

P(A|B) = P(A(B) + P(A|B)P(B°)

Now by the complementation law since P(B€) = 1 — P(B), the above equality yields the
multiplication law.
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